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MANIPULATION ERRORS IN FINITE ELEMENT
ANALYSIS OF STRUCTURES

By R. J. Melosh* and E. L. Palacol#*%

SUMMARY

The finite element concept provides the basis for numerical analysis of
structures. Implementation of analyses of large practical problems using this
concept involve digital computers. The use of computers incurs manipulation
errors (round-off and truncation) in the analysis since the computer carries
a limited number of significant places in arithmetic. These manipulation errors
will increase as the number of calculations are increased. Since the problem
sizes are growing, an analysis of the errors induced by the use of digital
computer is increasingly important. This report examines these errors for the
displacement and force methods of structural analysis for, respectively,
systems of finite elements in series and in parallel.

The principal manipulation error involves distortion of the mantissa of
the floating decimal representation of the number. This error depends upon
the selection of number base, number of places carried, arithmetic mode, and
manipulation mode. These characteristics are fixed by the selection of com-
puter hardware and software.  Table 1 identifies these characteristics for
several computer systems.

The manipulation error is also influenced by problem scale, structural
idealization, the sequencing of joints and elements, selection of coordinate
axes, element representations used, choice between the force or displacement
method, and the algorithm selected for solving the load-deflection relation-
ships for the structure.

Errors are studied in the input-output, generation and elimination phases
of calculation. The input-output phase involves that part of the problem in
which the data ir introduced into the computer and results are output for
analyst interpre+ation. Input errors are not significant. The most critical
input errors arise when decimal fractions are entered. Errors in input can be
regarded as changes in the original structure, and consequently their affect
can be interpreted by the analyst. Output errors are zero unless all places
carried in the digital computer are printed out. If all places are printed,

*Section Manager, Engineering Mechanics, Philco-Ford Corporation, Western

Development Laboratory, Palo Alto, Calif.
**Senior Engineer/Scientist, Douglas Missile and Space Division, Culver
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the last place may be in error.

Generation errors consist of the errors arising in developing the co-
efficients in the load-~deflection equations. These errors are relatively
small for both the force and displacement methods because coefficient generation
requires few calculations., Accuracy measures described can be coded to insure
the consistency of the coefficients. A larger source of error consists of the
introduction of coordinate information which does not permit accurate
evaluation of the geometry of the elements of the structure.

The largest manipulation errors are evoked in evaluating the primary
unknowns of the structure. For the displacement method these are displacements;
for the force method, force redundants.

For the displacement method, this study examines the errors in the analysis
of series systems. The worst error arises for these systems in the decomposi~
tion (triangularization) of the stiffness array. Error sources in this process
include instability of the calculations due to manipulation errors, the
accumulation of small errors, and critical arithmetic. Errors in forward and
backward substitution to evaluate the displacement unknowns are small in these
systems, This study describes criteria for the analyst to minimize manipulation
error and equations to bound its magnitudes. Included are descriptions of
optimum joints sequencing, element sequencing, selection of idealization, and
error estimation formulas. Criteria for software error control include
modification of the simultaneous equation solution algorithm and error checks.

The worst error in the force method arises in inverting the force-redundant
influence matrix. Errors in triangularizing the geometric matrix are only
critical if the structure in kinematically unstable. Algorithm instability and
the persistent accumulation of errors are important error sources in resolving
the matrix of redundants. Critical arithmetic is less important that for the
displacement method. The parallel structural system yields the largest error
of any structural system for the solution of the redundants matrix, Analyst
criteria include the selection of weighting of the structured redundants to
sequence equation treatment, the numbering of elements and the selection of
idealization. Programming described to control error includes modifications of
the solution algorithm and checks to insure the accuracy of the analysis.

Verification problems consisting of a swept wing and an unswept box are
analyzed to validate error bounds for practical structural analysis. Data
from this study shows that upper bounds based on the number of calculatiomns
are conservative for the displacement method and very conservative for the
force method. Study of these problems confirm that parallel systems should
be treated by the displacement method and series by the force method to
minimize manipulation errors.



Section 1

INTRODUCTION

When the finite element approach to structural analysis was introduced by
Levyl and Turner? fourteen years ago, analysis involved few equations. Cur—
rently, analyses involving between 400 and 800 equations are commonplace.
Analyses of 1500-2500 equations, which are unusuval now, will soon be typical.
Thus, though few bad answers have arisen in numerical analyses because of mani-
pulation errors, the probability of answer invalidity is increasing.

In addition to the increase in problem size, the complexity of finite
element analyses has increased. In the past, many applications were made to
structures for which the analyst could evaluate answer validity by simple
calculations, economical tests, or engineering experience. Now, powerful
programs like NASTRAN are becoming available, These provide the ability to
treat geometric and material orthotropy (sandwich, laminated, wound, and other
composites), more complex geometry (shells of arbitrary form, solids), as well
as more equations. Checks now available to insure answer validity can be
expected to be too gross for these more complex systems.

Even at present problem sizes and with the present problem complexities,
deleterious manipulation errors have occured in finite element analyses.
These have been treated individually. A comprehensive study of the severity
and causes of manipulation errors is required. This study can provide a basis
for the analyst to evaluate the accuracy of the analysis with respect to the
manipulation error and suggest ways in which he can formulate his problem and/or
maximize his answer validity.

Previous studies on manipulation errors pertinent to the structural
analysis problem are principally involved with evaluation of the error in the
solution of the load-deflection equations. Von Neumann and Goldstine’ per-
formed an extensive analysis of the errors involved in matrix inversion. Their
attack considered the errors involved in the solution to the equations. They
defined bounds on the magnitudes of these errors as a function of matrix norms.
Turing4 defined a number of more useable matrix norms ("condition numbers").
He showed that the bounds defined by Von Neumann and Goldstine were much less
when expected errors were estimated rather than mexima. Wilkinson? adopted a
"backward analysis" approach to error evaluation. This approach involves
determining bounds of changes in problem formulation rather than bounds on
solution error. He found it easier, using this approach, to define a set of
bounds for the analysis error. Forgythe® has given a good overview of mani-
pulation error problems in linear algebra. He distinguishes dense and sparse
matrices as having distinet error problems.

Other authors have treated manipulation errors in structural analyses in
particular. Rosanoff and Ginsburg’ and Rosanoff8 expounded the basis availa-
ble for error analysis as related to the structural analysis problem. They
cited some examples of analysis error and indicated the complexity of the error
analysis problem. Gatewood and Ohanian? looked at the manipulation error as a




function of the order of the differential equations being considered. They
showed that considering first order equations gave less error than second order
differential equations. Moreover, the manipulation errors associated with a
pair of second order differential equations was less than that associated with
a single fourth order differential equation. Shah!0 evaluated errors in a
structural analysis in terms of the eigenvectors of the matrix of the load-
deflection equations using the displacement method. His study indicated some
general conclusions with respect to error.

This paper is directly concerned with the manipulation errors in conven-
tional force and displacement method analysis of structures. The purposes of
this study are as follows:

1. To define the relative importance of all sources of manipulation
error in a computer-aided numerical analysis of a structural system
using finite elements. The structural systems will be restricted
to those with linear response characteristics.

2. To present criteria for the engineer to evaluate the maximum
manipulation error that may occur in his analysis and to define
ways in which he can formulate his problem to minimize this error.

3. To note error control devices that the programmer may use to reduce
manipulation error.

4. To demonstrate the effectiveness of the criteria for error evalua-
tion for practical finite element structural analyses.

The results of the study are presemted in five sections. The next section
provides the basic definitions for the error analysis and examines the error
sources common to both the force and displacement methods of structural analysis.
The third section includes the error analysis of the displacement method of
structural analysis. The fourth section involves error analysis of the force
method. The fifth section examines use of displacement and force criteria in
predicting the manipulation error associated with the analysis of a swept wing
and an unswept box. The final section of the document contains a summary of
report developments.

The valuable assistance of Philip Diether of Philco-Ford and Harvey Puckett
of Douglas in formulating test problems is gratefully acknowledged. The
assistance of the Ames computing laboratory in performing displacement method
calculations was indispensable. The assistance of Stewart Crandall in implement-
ing higher precision analyses was of special help.

Displacement method equation solutions were developed using the SAMIS code
available from the University of Georgia. Force method analyses were implemented
by Format II, available from Wright-Patterson Air Force Base.



Section 2

GENERAL ASPECTS OF ERROR ANALYSIS

———

Manipulation errors are caused by using a limited number of places to
represent a number. Most engineering data are represented on the computer using ;
floating point numbers. Each representation consists of two parts: a mantissa
and an exponent. \

In a single operation, manipulation errors can involve exponent exceedance
or mantissa distortion. The limited range of the exponent due to the limited
number of places alloted, induces "overflow" and "underflow" errors. Overflow
occurs when the result of an arithmetic operation is such that the exponent
exceeds the value that can be represented. I£, for example, exponents bigger
than one are inadmissible in a tens base calculation, forming the product of
10! and 10! would result in overflow. Underflow occurs when the result of the
calculations is so small that the exponent is smaller than representable with
the number of places provided for the exponent.

Overflow and underflow are not normally critical sources of manipulation
error. Usually, the number of places for the exponent is enough so that over-
flow and underflow do not occur.

1f exceedance errors occur, it is conventional to replace an underflowed
number with an absolute zero during calculations. Thus, when underflow occurs,
the number representing the result is negligible compared with typical numbers.
When overflow occurs, however, a number that is infinitely larger than other
numbers cannot be substituted for the overflowed number. With some software,
the overflowed number is replaced by the maximum number that can be represented
on the computer. On others, the number of overflow occurrences is noted to
provide a measure of the inadequacy of the calculations to the analyst.

If exponent exceedance errors are important, they can be eliminated by
changes to the problem or the software. Scaling or shifting of the problem data
base can be used to reduce the required exponent range of calculations. Scaling
requires multiplying all numbers by a factor. Shifting involves translating
coordinate systems. These same types of changes can be incorporated in software
to insure that no exponent exceedance occurs. The optimum problem formulation
is that in which the full range of the exponent is used but never exceeded.

Though exponent exceedance errors rarely occur and can be easily sensed
and eliminated, the same is not true of mantissa distortion errors. These
errors involve the attrition of the mantissa as a consequence of a series of
calculations. The attrition may result in exponent exceedance but deleterinus
errors can exist without over or underflow. The simplest way to detect and
eliminate these errors is by performing arithmetic using more places in the
mantissa. Determination of the magnitude of these errors is the central concern
of this study.




Error Parameters

Manipulation errors depend on the analyst's choice of hardware and soft-
ware. This choice determines the number base, the arithmetic mode, and the
manipulation mode. The number base used in all high-speed computers is two.
Both the exponent and the mantissa are represented in a binary mode. Thus, the
number 0.5 x 10} in the tens numoer base is represented on the computer as
.101 x 23. In the representation, only the mantissa (.101) and the exponent (3)
are cited. The base of the exponent is implied.

The arithmetic mode of interest is the floating binary mode. Fixed point
arithmetic is inherently more accurate using a given number of places to
represent a number because more places can be allocated to the mantissa when the
exponent is implied. The added programming effort involved in controlling scal-
ing throughout the calculations, however, results in fixed point being an
unpopular mode for scientific analyses.

The manipulation mode is defined by the rules for arithmetic. These rules
define the precision of the calculations, how the answer is developed, special
treatment to the answer and what is done with the remainder in the calculations.

This study will be concerned with single precision manipulation. This
means that the number is represented by a single computer word. Most large
computers provide for both single and double precision arithmetic in the hard-
ware. Higher than double precision can be attained by software but involves a
large time penalty compared with single precision. For example, quadruple
precision is over four times more time consuming than double precision though
double precision is only 1.4 times more expensive than single precision. The con-
sideratior o f multiple precision modes does not change the basic error
analysis. It means that calculations proceed as if a single number with a
larger mantissa has been used. For example, if single precision has a 24 bit
(binary place) mantissa, double precision has 48 (IBM 7094).

For this study, it will be assumed that the answers are developed
using a single precision accumulator for addition and subtraction. A double
precision accumulator will be assumed for multiplication and division. This
assumption is true for a number of computers of interest.

After the single or double precision result is obtained, it will be assumed
that the result is normalized. Normalization consists of shifting the mantissa
to the left as far as necessary so that the lead place contains a non-zero
number. It will be assumed that the lead place is a binary place. It is noted
that this is not true of the IBM 360 system which uses a hexadecimal (five bit)
first place. Binary normalization is common to all other large scale computers,
however. Upon completion of normalization, it will be assumed that the
remainder is truncated. In truncation the remainder is simply discarded. In
rounding, on the other hand, the last place in the mantissa is increased by 1
if the first place of the remainder is non-zero.

Average and maximum errors associated with truncation tend to be greater
than those due to rounding. The average truncation error is slightly less than
one-half the value of the last place in the result. The average rounding error’




is zero. The maximum truncation error is one part in the last place; the maxi-
mum rounding error one-half part. Assuming truncation will yield error bounds
which would indicate larger errors than assuming rounding.

The manipulation mode assumed is consistent with the mode used in a
Fortran IV program operating on the IBM 7094. This mode is more or less the
common mode of calculation on all computers.

The characteristics of various computers with respect to manipulation mode
are summarized in Table 1. This table cites the total work size for number
representation, the number of the bits of this word size reserved for the
mantissa, and the number of decimal digits that are represented. If the range
of the exponent is of interest, the reader can determine the number of digits
in the exponent by subtracting the number of bits in the mantissa from floating
point word size and considering this as a range on exponent of the number two.
For the Burroughs B5500, for example, the number of bits for the exponent is
thus eight. (In this partic :lar case one bit is reserved to indicate the
existence of data in the storage location.) The largest exponent that can be
represented is 2128 1¢ is customary to divide the exponent equally between
the ggsitive and negative exponents. Thus, the exponent could range from 2~

to 292, Converting this into a decimal system, the exponent could vary between
10-19 and 10+19.

As indicated by this sucrvey, most of the large scale computers truncate
the result of the arithmetir operations. Whether or not rounding or truncation
is used depends upon the compiler. In most of the large scale computers, the
machine language instruction to perform either rounding or truncation is availa-
ble. Thus, the entries in the fifth column of the table define treatment of
the mantissa in accordance with the Fortran IV compiler for the computer
indicated. '

Besides his selection of computer hardware and software, the analyst's
choice of problem scale, idealization and solution algorithm has an important
affect upon the manipulation error in his calculations. As noted, his choice
of scales determines whether exponent exceedance will occur and influences the
magnitude of mantissa distortion. His idealization of the structure determines
the conditioning of the numbers used in the calculation. Of importance are the
joint numbering sequence, coordinate axes, the material coefficients, and the
element representation selected for the finite elements. The algorithm selec-
ted by the analyst defines the sequence in which calculations are performed and
the approximateions used in arriving at the solution.

In the sequel errors will sometimes be characterized in their absolute
form and sometimes in their relative. Absolute errors are statements of true
values of the errors. Relative errors are the ratio of the absolute error
divided by some measure of the numbers used in the calculation, e.g., e = E/A
where e is the relative error, E is the absolute error and A is the number
measure.




Table I

Accuracy of Computers

Floating Decimal No. of Bits in No. of Digits Manipulation

Computer Word Size,Bits Mantissa in Accuracy Mode
Burroughs B5500 C48% 39 11.7 Round
CDC 3600 48 36 10.8 Round
CDC 6600 60 48 144 Round -
GE 265 40 29 8.7 Truncate
Honeywell MH 800 48 40 12.0 Truncate
Honeywell MH 1800 48 40 12.0 Truncate
IBM 7094 36 27 8.1 Truncate
IBM 360 32 20 7.2 Truncate
Philco 212 48 35 10.5 Round
RCA Spectra 70's 32 2,0 8.1 Truncate
Univac 1108 36 27 8.1 Truncate

¥ One bit indicates data existence.

O Hexadecimal normalization; thus effectively 23-1/3 bits, on

the average.




The objective of this error analysis is to define the magnitude of the
errors that arise in calculation. In performing the analysis, each operation
will be treated independently. It will be assumed that the input to that
operation is precise. The error in the output of that operation will be pre-
dicted. Operations include input-out and arithmetic. The error analysis will
be performed by analyzing special cases and developing error criteria. These
criteria will be evaluated on a set of special problems. Final verification
of the criteria will be performed by applying the criteria to practical struc-
tural problems and correlating results with computer analyses of these struc-
tures.

Input-Output Errors

Input-output errors are the errors involved in communicating problem con-
stants between the analyst or programmer and the computer. Usually input data
is developed by the analyst in the form of card-punched information. The
programmer supplies input to the calculations in the form of constants defined
in his source deck. Output data is transmitted by the computer to the analyst
in the form of printouts and punched card data.

Input errors include errors in data truncation and conversion. No matter
how accurately the analyst defines his input data, the computer represents this
information in a floating point word of limited size. Thus, for example, a
ten-digit number is truncated to an 8.3 digit number. Truncation is performed
after converting digits. Therefore, in this example, the tenth digit would be
disregarded and the ninth represented with some error.

Conversion errors arise because input data is generally introduced in
decimal form and must be converted into the binary base system for calculations.
No conversion error occurs in transmitting integers. Errors do arise, however,
in converting decimal fractions. 1In fact, a 27 bit representation does not
provide for eight digit accuracy due to conv~rsion error~".

Output errors are caused by transforming the binary representation of the
number into the decimal system and reproducing a limited decimal representation
for the convenience of the user. These again, are errors of conversion and
truncation. In conversion for output, digits beyond those printed or punched
are disregarded. 1In converting the mantissa to a decimal system, errors arise
only in digits beyond those represented in the computer, i.e., in the ninth
digit in a machine carrying 8.3 decimal places in the mantissa. This is because
single precision operations are used to perform the conversion. Since the
analyst is normally interested in fewer significant figures than represented
on the computer in the mantissa, this error does not appear in the final answer.

Table II provides typical input-output error data. These data were obtained
using the IBM 7094. Errors in input transformation for integers is significant
only in the last place that can be represented in the computer. This error is a
measure of the truncation error alone. Error in converting fractional decimals
is seen to be more significant. It is interesting to note




Table II

Input-Output Errors

_Number¥* Internal Form Output Form
o1 +099,999,995,6 099,999,996

o2 +199,999,999,1 .199,999,999

.3 .300,000,000,5 300,000,001

ob +399,999,998,2 399,999,999

<5 .500,000,000,0 +500,000,000

.6 .600,000,001,0 600,000,001

o7 ."700,000,004,3 .’700,000,003

.8 +799,999,996,5 799,999,997

9 +899,999,998,2 899,999,999
1.0 1.000,000,000,0 .999,999,994
268435455. 268,435,456.0 268,435,456

¥From compiler or source cards.
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that data introduced through the compiler by way of input cards may result in a
different representation than the same decimal introduced by the programmer.
This inconsistency can be a problem if it is required to match input of the
analyst with constants supplied by the programmer.

Output errors arise only in the last decimal digit represented on this
computer. If less than nine digits are printed for the 27 bit word, the
answe is accurate in all digits. Since engineers are seldom interested in more
than four significant digits in their answers, this output manipulation error
can be disregarded for all computers.

If the analyst is concerned about the magnitude of the error due to input-
output error, he can modify his calculations to measure it. This can be
achieved by changing input to span the exact numbers to be represented, re-
running the analysis, and comparing solutions.

The affect of truncating numbers entered in the source deck is not as
easily measured since it would require a recompilation of the program being
used. However, these errors are small if the programmer enters constants with
maximum precision of the floating words. For example, the constant II in a
27 bit (8.3 decimal digit) mantissa should be entered as 3.14159265 to minimize
the error.

If the analyst insists on eliminating input manipulation errors, this can
be achieved for all but irrational numbers by scaling his data by the least
common denominator consistent with model scaling laws. He should then choose
a computer system which can handle this integer.

It is concluded that input-output errors are not an important source of
manipulation errors. The principal errors in input involve conversions. 1If
these errors are important, their effect can be measured by recalculation. The
principal errors in output involve truncation. These can be avoided by print-
ing out at least one less significant place than is carried with the precision
available. 1If the analyst requires a complete representation of the number for
output, he can always print the number in octal format and perform the con-
version himself without errors.

Simple Arithmetic Errors
All errors other than input-output errors arise at the simple arithmetic
level. Simple arithmetic consists of single calculations and series of
calculations involving a single operation.
Consider first the errors arising in a single addition, subtraction,

multiplication and division. The maximum absolute error in such an operation
is less than or equal to one part in the last place of the un-normalized answer:

lEmlS; bx(A)-p + 1 (2-1)

vhere b 1is the number of base of interest, x(A) is the exponent of the answer
p is the arithmetic precision (number of significant places in the mantissa).

11




When two components are added together, the exact sum can contain more
places than either addend. Only in this case can the computer result be in
error. Thus, errors in the order of the maximum given by equation (1) arise
when the exact sum contains more places than either addend. One additional
place is sufficient to approach E . The following examples show this. The num-
ber base assumed is 10. E is the exact value of error.

p=2: .43x10%+.29x10%=.72x10" E=0, Em=.01x10l
p=2: .12x10%+.29x10'=.14x10° E=.009x102, E =.01x102
m
o -1 1 2 2, 2
p=3: .123x10" '+.999x10'=.100x10% E=.000023x10%" E_=.0001x10

p=3: .743.10%+.999x1073=.743x10% E=.000999x10%, Em=.001x102

When the number base is 2, the error bound given by equation (1) provides a
closer estimate than with the number base 10. For example:

p-2: .llx22+.llx20=.llx22 E=.0011x22 Em-.01x22
p=3: 101k 3+, 111x27 % 100x2° Y E=.00011x27} Em=.001xz'l
p=4: 1101x2%+.1110x2°-.110x2%  E=.00011x2" Em=.001x24

In addition, the relative error is defined as the absolute value of error
divided by the sum. Using equation (1) and recognizing that the truncation is
always positive, the maximum relative error is given by

1-
e =b P (2-2)
ma
Where the second subscript indicates that the operation is addition. The exact
sum is bounded by

A 5; Ag + Em$; Ay + Aema$; A (2-3)

where A_ is the estimate of the answer. Thus, the solution is always further
from zero than the estimate.

In subtraction, the number of places in the answer may be less than the
number of places in either the minuend or subtrahend. Then, the subtraction
operation involves shifting of the result to yield a normalized mantissa. Modi-
fying equation (1) to include consideration of the shifting of the mantissa
after the subtraction, it takes the form

12



E =bX(A)-p + £ + 1 (2-4)
ms

where £ is the number of left shifts (multiplications by b) to normalize the
answer. Note that the actual error of subtraction may be positive or negative.
The fidelity which this equation defines in upper bound is indicated as follows
for decimal and binary based arithmetic. Again, as for addtion, the bound is
usually closer when binary arithmetic is used.

b »p Subtraction Result E
-— - _ ms
10 2 .16x10%-.89x10° = .8x10° .09x10° .1x10°
10 2 .16x10" 2% .41x10% = -.40x10" " .006x10” " oix107t
2
10 3 .326x10%-.999x10° =  .297x102 .0001x10%  .001x102
10 3 .143x1073-.142x10"3 =  .100x107° 0. .1x107°
2 .11x2%-.10x2'=.10x22 = .10x2? 0 .01x22
-1 0 0 0 0
2 3 .101x2 1 -.110x2 = -.100x2 .0001x2 .001x2
2 4 .1001x2°-.1101x2° = .1001x2° .1101x2°  1000x2t

Because the results of the subtractions may be zero, it is desirable to
define the relative errors as:

N
= 3 -
gs IEmsl i-1 Inil (2-5)
N

wvhere _ 3  nj means the sum of the absolute values of the numbers involved in

the ari%hﬁe%ic. Using (4) and (5) the exact difference is bounded by:

<o -2 <Ja |<

IAEI-lEms Clagl -3 n) ems~\~lA l\‘IAE, (2-6)

Thus, the answer is always closer to zero than the estimate.

Subtraction tends to result in smaller errors than addition. Absolute
values of errors are the same magnitude, but subtraction involves no error when
the exponents of the numbers producing the answer are the same. Therefore,
relative errors, as defined by equation (5), will be smaller for subtraction

than addition.

This conclusion offends the intuition because the subtraction of nearly
equal numbers will result in an answer with few significant figures of accuracy.
This deficiency is not subtraction error. It is due embedding the information
of interest in the least significant places of the mantissa of the minuend and
subtrahend. This operation is one type of '"critical arithmetic.'

A second type of critical arithmetic occurs in both addition and subtrac-

13




tion. This occurs when one of the components is small compared with the other,
and vital information is lost. In this critical arithmetic, the smaller com-
ponent is truncated from the left and the compoenent may be lost, e.g.,

b=10, p=4: .1000x108+ .5000x104=.1000x108

b=2, p=3: .101x23-.101x20=.101x23

Since the result of multiplication of normalized numbers is always nor-
malized, the limitation of equation (1) to a normalized result can be disregard-
ed for multiplication. It is convenient, however, to define another, less
accurate, error measure for multiplication:

E = AC (2-7)

where the subscript m designates multiplication, A is the exact product and
C bl-P. The following examples illustrate the effectiveness of equations
(1) and (7) in bounding the error for multiplication in the tens and binary
bases:

b p Product Result E EE EEE
10 2 C23xiohyC.21x10t) = .asxiol  .03x107' .1ox10™! L4sx107!
10 2 Csaxioby(.13x10h) = .1ox10®  .66x10° 1.0x10°  1.06x10°
10 3 (.223x102)(.684x10%) = .1152x10° .532x10° 1.0x10°  1.52x10°
2 2 11x22)(11x2%) - .10x2° ooix2™t L1x27t 10271
2 3 Cioxel)(101x2®) = .111x2®  Lotox2d  Lix2! ikt
2 4 (.1101x2'2)(.1001x23 = .1110x2° .oto1x2”3 L1x273 .1llox2™3

It can be seen that (7) gives an estimate of the maximum error that is at
most twice that given by (1) for binary base arithmetic. It may be ten times
greater for decimal arithmetic.

The relative error in multiplication is defined as the error divided by the
value of the product. Using equation (7), the relative error takes the form

‘ e ‘ = ‘Ci (2-8)
mm
Bounds for the exact product are

T T AN Y B L O e e | I CRY

Thus the answer is always further from zero than the estimate.
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Equation (1) defines an error bound for division because, like multiplica-
tion, the result is developed in a double precision accumulator. Normalization
of the result insures accuracy to as many places as in the original dividend and
divisor. Like multiplication, an alternate bound for the quotient error is
taken in the form of equation (7). Illustration of the effectiveness of equa-
tions (1) and (7) in bounding the error of division is indicated by the follow-
ing examples:

b p Quotient Result E E E
o ~romtent e - Cm “mm

- - -2 -
10 2 (.57x10°)(.24x10°)"1 = .23x10° .0073x10"% .01x10™% .023x10" 2
10 2 (.57x10%)(.68x107%)"1 = -.83x10° .oosxio®  .oixio'  .os3xlo!
10 3 (.57x10%)(.683x10" 1)L = .84x10°  .001x10°  .01x10>  .084x10°
2 2 (.10x22)(.11x21)'l - .10x2! .0101x20 1x2° .lx20
2 3 Grox2 Hytomx2d ! = L100x2°2 Loiix2™? L1x2”% L1iox2™?
2 4 (.1101x2°)(.1011x25)°Y = .1001x2° .o0011x2°  .1x23  .1001x2">

Again it is seen that the bound given by E  differs from that of E by at most
a factor of two when the binary base is inVolved in ‘the operation.

Relative error for division is defined the same way as for multiplication,
i.e., by equation (7) and the quotient is bounded by equation (9). The exact
quotient is always farther than zero than the estimate.

It is sometimes desirable to determine error when the exact answer is un-
known. Then formulas for the relative error can be used with estimates of the
exact answer to predict absolute error magnitudes. These estimates are only as
good as the estimates of the exact answers.

Simple Arithmetic Sequences.- A simple algorithm involving arithmetic
operations is to perform a series of calculations using either addition, sub-
traction, multiplication or division. Examination of the truncation error in
these sequences provides a basis for bounding errors in more complex sequences.

Assume that it is desired to perform a series addition.  The operation consists
of performing a number of additions, N, each time adding a component to the
previous sum.

Consider first the case where the components are all equal. Then the bounds
for the error can be defined by examining the errors when the most and least
error prone mantissa are considered. These bounds can then be curve fit to
provide simple formulae for evaluating errors in series addition as a function
of the number of components and the precision being used.
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The mantissa with the maximum error is given by

m_ = op~t P (2-10)

This mantissa results in the maximum absolute and relative error in a _series
addition. In the tens number base, it gives a component of the form 19 x quq
where q is any number within the admissible exponent range and the verniculum
indicates that the digits it spans are repeated. The first digit in the man-
tissa is 1 +to maximize the relative error. The remaining digits are nines so
that the truncation, which occurs from the right, is a large as possible value.

The mantissa associated with least truncation error is
m = bt (2-11)

This results in a lower error bound since it involves no error in a series of
additions until the number additions is greater than bP . Then critical
arithmetic occurs and the error for each addition is

E = pt bx(Ac)

Where Ac here is the current sum.

Figure 1 shows the variation of error as a function of N, the number of
times the component is added in the series for critical components. The varia-
tion of the upper bound with N is typical of errors with any component. The
absolute error varies linearly with N in each range in vhich the sum varies
from S to bS where S = bg% and q is an integer. The range is started by
a number of the form §. Within this range the relative error varies as

(EO + nZ Ema) (2-12)
SO+ nZ

e =
ma

where Eo is the cumulative error at the beginning of the range

n is the number of components added

Z is the component being added

S, is the value of the series sum at the beginning of the range. In
most ranges, nE << S, and the relative error varies nearly linearly. In the

first range, S, = E, = O and the relative error is constant.

Figure 2 shows the relative error as a function of N over a number of
ranges. 1n this case the number base is 10, the precision 8, and the components
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considered to define the bounds being added are given by e%uations (10) and (21).
The relative error is negligible wvhen N is less than bP~<. The error is ’
excessive wvhen N is greater than bP., The critical error range of interest is
thus:

P R KPP

where Rc defines the critical ranges of N.
Within this range an upper bound fit for the error is given by
= P _
e, = 0.9x10° "N (2-13)

The fit of this curve for the tens base is indicated on Figure 2. The corres-
ponding formula for the binary base is

= 3P _
e, = 0.5 2N (2-14)

Formulas (13) and (14) indicate relative error in percent if multiplied by 100.
Equation (14) indicates that relative error will not exceed five percent until
the number of additions exceeds .1x2°7 = 26.8x100 vhen p = 27.

Table 111 shows the small relative error if calculations are resequenced to
minimize the error associated with the series addition. The optimum process
consists of pairing numbers of equal size in the addition. Thus, for example,
if 16 equal components are to be added, 8 pairs are first added, then pairs of
these sums are added by four more additions; the results of these are added in
two additions and the final result obtained with the final and 15th addition.

Table IIIshows that the reduction in error due to this optimum sequence of
additions is dramatic. This example illustrates the importance of the selec-
tion of algorithm in affecting the magnitude of the manipulation error. un-
fortunately, it is costly to define the sequence of the calculations based
upon the component magnitude., Thus, the improvement indicated in this simple
example would be expected to be greater than the improvement that would be
‘achieved in practice.

The maximum errors indicated for equal components are also valid estimates
for maximum errors when unequal components are involved. The equal component
case represents the worst case, since the error accumulates at every step and
the accumilation is the maximum that could be attained. Thus, the error in-
volved in the addition 6f equal components is approached as a 1imit when
unequal components are added.

The meximum addition error defined using the component (10) defines ex-
tremes that can be achieved in practice. The error bound given by equation is
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Bound

400 x 10'4

455 x 10"3

455 x 1072

455 x 107%

455 x 10°

.455 x 10°

455 x 102

945 x 102

.994 x 107

Table III
Error Reduction for Optimum Addition
b =10, p = 8, G= 19,999,999
Relative Error, %
N Optimum
102 .113 x 1074
10° .190 x 1074
10% .240 x 1074
10° .300 x 1074
10° .377 x 1074
107 472 x 1074
10° 533 x 1074
10° 792 x 1074
1070 .843 x 1074
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an approximation. It gives an upper bound for error except when errors are
negligible. '

Consider the errors involved in performing a number of subtractions. A
series subtraction is defined as a sequence of subtractions such that the result
of each subtraction yields an answer which is always opposite in sign to the
sign of the next component. This series of subtractions can occur by starting
with a large positive number and sequentially subtracting a small component
a multiple number of times or it can occur by performing subtractions with
alternating signs.

The error bound for serisl subtraction can be developed from the bounds
for serial addition. The maximum absolute error in subtraction cannot exceed
the maximum absolute error of addition since the critical component in addition
maximizes error at each step in the calculations. Thus, the meximum absolute
error(ca? be defined by considering additions of the mantissa defined by equa~
tion (10).

The relative error bound for subtraction may be taken as twice the relative
error in addition. This is true because the maximum error does not occur when
the minuend and subtrahend have the same exponent. Then the error is zero.
Since the denominator for extreme relative error must involve two unequal ele-
ments, the worst case is when the smaller part of the denominator is legligible
in absolute value compared with the large. Thus, the maximum relative error is
bounded by: ’

e 1.861078y b= 10, p=28

s (2-15)

ens = 27Py b=2, p=p

The error for multiplication of a series of factors is the same as for
division of a series. The upper bound for the error can be expressed as:

_ N, _
E = A(14C) A = E 4 (2-16)

then, since C is much less than 1, the error can be satisfactorily approximated
by:
E, =ANC=E , (2-17)

The corresponding relative error is given by dividing the equation by the answer.
Thus, the relative error is given by:

(2-18)
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This can be converted into percent by multiplying by 100. The lower error bound
is zero.

Equations (12) and (18) define bounds that cannot be achieved. However, as
the precision increases, their accuracy improves. Table IV shows the multipliers
involved to maximize relative error in series multiplications in the tens base.
Factors were selected by trial and error. Figure 3 provides a plot of exact
relative error and estimates obtained by equation (18). These curves show that
the bound for estimates is satisfactory when p 1is four or more. Therefore, it
would be expected that equation (18) yields satisfactory upper bounds when
b= 2 and p = 27.

In considering the sources of error for a series of opérations, the greatest
error bounds arise for series multiplications and division. The least error
arises in series additions. An extreme bound for the error for any of these
sequences of calculations is, therefore, givea by the equations:

E = ANC e = NC (2-19)
m m

It is noted that when subtractions are involved in the sequence of operations,
use of equation (19) to bound the solution error is difficult because the esti-
mate of the answer cannot be used for A. A must be the absolute sum of the
numbers subtracted, added, and multiplied. 1t is also observed that even with
the conservative error bound defined by equation (19), many calculations are
required before the answer has more than 5% error. When b = 2, and p = 27,
13.4 x 106 calculations would be required.

Though many calculations are required to develop significant relative trunca-
tion errors, large analysis errors can still occur. These arise when critical
arithmetic is involved. As an example of a sequence involving ‘this error,
consider:

b=10, p=3: .333x100+l.Ox106+.222x100 -l.0x106=0.0

Here, it is desired to add the first and third numbers. The result for the
calculation sequence used is meaningless due to critical arithmetic, though
sufficient precision is being used if the sequence of calculations is changed.
Note that the relative error of the calculation is small.

Vector Scalar Products.- Wilkinson12 has developed an error bound for
accumulation of inner products. This is given as

C
pX
ez i=laibi§i
v C
(2-20)
] -2
; P - _ P
|&)= 3c2®,  |&|= er2-m2
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Factors :
Eq. (18):
Exact

p =2

Factors :
Eq. (18):
Exact

p=3

Factors :
Eq. (18):
Exact

D=4
Factors :
Eq. (18):
Exact

p=28

Factors :

Eq. (18):
Exact

Table IV
Multiplication Error Estimates

b = 10

( 2x9)x (229)x (2x9) (2x9) = 1.889568x10°

e =9x1 = 9.0 900%
I 5.5
emmél-(§) = 947 94.7%

13x13x(8x14)x(8x1L4)x(8x1L4)x(8x14) = 26.62x108

1 _
e 9%y = «900 90.0%
emm514.62/26.62 = .59  54.9%

(114x114x110x900x800 )x(144x1 4/x110x900x800) = 105.9428x1018

o =0 f%o = .090 9.0%
emm;5.94/1o5.9 = .0562 5.6%

1031x1031x1016x1025%1019%1008x1015x1027x1028 = 1218.4::1024
_ 1 _

emm—8x TO—G-C-)- = .008 0.80%

emm;8.4/1218.4 = ,00691 0.691%

10,007 ,000x10,007,000x10, 497 ,000x10, 100,000x10, 157 ,000x10,020,000
10,156,000 = 10,973,628x1042

o =6x10~0  6x107°%

mm _ 7 _5
emm=6/10,973,628 = 5,47x10 5.47x10 "%
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and a, and bi are the components of vector A and B. Assume that all the com-
ponents are equal. Then the relative error is given by

C

- - -2p-1
€ om —f;l fi = 3x2 C(C+3) (2-21)

The number of calculations involved is 2C. Therefore, if e = 0.05, the number
of calculations must exceed 47.8 x 106, when p = 27. When unequal numbers are
involved, Wilkinson estimates that the expected relative error will be

e 1/2,1-p
evm C 2 (2-22)

Then, the expected number of calculations for the relative error to be less than
five percent would be about 5 x 1014,

In both cases, the number of calculations to develop significant attrition
errors exceeds the bound developed for the simple sequences. Consequently, the
probability of significant attrition error will be determined by comparing the
number of calculations with 13.4 x 106,

Structural Analysis Errors

Structural analysis involves more complex sequences of calculations. To
simplify the analysis of these errors, each of the operations will be considered
independently. The operations consist of generations of the coefficients of the
structural equations and elimination of the coupling of the equations to define
the primary secondary unknowns. The equations of structural analysis are
completely defined by the single set of linear algebraic equatioms.

T
D + = £
Q 4t EQAT 5
(2-23)
DX+PTA=§
X X 2
= - -24
PQQ+PXX F (2-24)
where D., D, = substructure flexibility matrices. P., PX = matrices defining
geometric relations between forces PT, and P the trgnspose of P, and P,, Q =

unknown internal forces for the detefminate Substructure and X fgr the %est of
the structure, £, &€ = interelement distortions F = the vector of loads A=

the vector of jo%nt &isplacements. Equations (23) are the internal load deflec-
tion relations for the structure. Equations (24) are the equilibrium equations
for the system. These constitute the necessary and sufficient equations to
define all the internal loads and structural displacements of the system. Dis-
regarding structural idealization, the distinction between the force and dis-
placement method consists only of the manner in which equations (23) and (24)

25




are solved simultaneously.

In the displacement method equations (23) are solved for Q and X, and the

results substituted in (24). Equation (24) neglecting El and 62, then takes the
form:

-1.T -1.T
[PQDQ PQ-l-PXD2 PX:|A— F

-1.T -1 T
PQDQ PQ + PXDX PX (2-25)

or KA = F where K =
and K is called the stiffness matrix. This equation is solved for and the
results substituted in equation (23) to evaluate the element forces, Q and X.
These equations are used in the form:

-1_T -1 T
=D 'PA X=D P
©= % o x x4
-1 T
or{§}= SA, where S =|:18Q g-l] PQ (2-26)
X T
P
X

The calculations involved in generation consist of those required to
develop the coefficients in the stiffness matrices. Generally, these are
developed directly rather than by explicitly forming the indicated triple
product. Elimination errors are all the errors involved in solving the simul-
taneous equations (25) to determine and equation (26) to evaluate the un-
known forces, Q and X, of the structure.

In the force method Q and X are evaluated first and then displacements are

found. Q and X are found by solving equation (24) for Q and substituting the
result back in equations (23). Neglecting €y and €, this gives

-1 -1 T
-D.P P X- P =0
ofq Px DQEQ F + QA

DX + ByA = 0 (2-27)
Eliminating A from equations (27) gives

T -1T -1 T -1T
(PP D.P P D)X= -P.P P F (2-28)
xQ ©9Q x X X"Q Q
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This equation is solved for X. Q, found from equation (24), is

—o =1
Q =Py [PXX-F] _ (2-29)
and A is given by,
T
- =1
A= P D, Q (2-30)

Generation errors are the manipulation errors associated with all opera-
tions required to develop the coefficients in equations (24) and (25).
Elimination errors are the errors associated with the operations involved in
solving the structural equations to define the unknown internal forces X
(equation (28)), the forces Q (equation (29)), and the unknown displacements
(equation (30)).

These structural analysis manipulation errors will be examined in the

next two sections. Section 3 considers displacement method errors and Section
4, force method errors.
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Section 3

DISPLACEMENT METHOD ERROR ANALYSIS

This section considers the structural analysis manipulation errors in generating
the coefficients in the structural equations and in solving them, It examines the error
magnitudes and describes the implications of these errors on problem solutions, It
provides the engineering-analyst with guidelines for reducing, estimating and measur-
ing manipulation error, It suggests guidelines for the programmer to reduce and
measure errors.,

Generation Errors

Generation errors in the displacement method include the manipulation errors
incurred in development of the loading, stress, and stiffness matrices for each element
of the structure., These errors also include the errors evoked in forming the loading
and stiffness matrix for the complete structural system (i, e., the global loading and
stiffness matrices).

Generalizing the formulation of MeloshM, the loading matrices for a finite
element are written in the form,

fi = LGP
i = 13C Mg
£ =1,C M CT
mi 3 o a o
fi = L3 CoDrEp eqy (3-1)
where
fpi = loading vector for pressure loading of finite element i,
f . = loading vectors for field accelerations due to body forces. (D'Alembert
gl forces) in element Mi",
fmi = loading matrix due to local accelerations at each joint, (mass matrix)
of element i,
fti = loading vector for thermal forces treated as body forces in element "i',
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and the linear operators given in equation (1) perform the following functions:
C0 transforms displacement coordinates from the global to the local system,
The global system is the set of coordinates used in expressing equations
(2-23) and (2-24).

I performs integration, The subscript n denotes the maximum dimension of

Dy defines pressure distribution,
g; defines the acceleration potential over the volume.
M_ defines mass distribution over the volume,

D_ is a differential operator., In this case it transforms displacements into
strains,

EL is a matrix of elastic constants, This transforms strains into stresses.
¢,,. defines the distribution of thermal strains over the element before dimen-
sional changes are permitted. Note that the loading resulting from these

deformations implies the existence of g in equations (2-23)

The stress matrix for a fiﬁite element can be formalized as:

- T .T _
8, = 1L, E; D" C, (3-2)

where

S. is the matrix of stress coefficients used by equation (2-23) to define
stresses in the element i

The element stiffness matrices are similarly given by:

= T T Vs -
Ki = 13 Co DI EL DI Co (3-3)

It is noted that the coefficients are not usually developed by performing the
operations defined by equations (1), (2), and (3) since they can be developed more
economically otherwise. Defining the operations this way, however, provides a
simple and sufficiently accurate way to estimate the number of calculations involved.
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The summation of the element loading and stiffness matrices define the global
loading and stiffness matrices:

SR\
F = 1
q El iqi a=p, q

m Ty i fmi i
£ T
K = 1§1 Uk T (3-4)

where f is the number of finite elements in the structure and the matrix U is a2 permuta-
tion matrix, i.e., a matrix in which each row and column contains only one component
equaltol. 0. The permutation matrix has been described by Arqyrisl5 as a Boolean
matrix., Again, the formal definition of equation (4) is not used in a computer program
which develops the structural coefficients because it requires more calculations than
necessary. This form is convenient in describing the process.

Attrition errors in developing the loading matrices are negligible, The number of
calculations required for the development of the matrices is most when the mass
matrix is involved. Here, the number of calculations is of the order 3;2 (2j~1) where
j is the number of generalized coordinates. The matrices of equation are assumed to
be square, fully populated and of order j. For a rectangular prism (an element with
a large number of generalized coordinates j = 24, since there are eight joints with
three degrees of freedom per joint., Then, the number of calculations would be about
0. 081 x 108 including additions, subtractions, multiplications, and divisions. This
many calculations are not sufficient to involve significant attrition exrror since it is much
less than the 13, 4 x 106,according to the analysis of Section 2.

Development of the coefficients in the loading matrix may, however, involve
critical arithmetic. The integrations require calculating the lengths, areas, and .
volumes of the structural elements using data defining the coordinates of the bounding
surfaces of the element. Lengths are obtained by differencing these coordinates; areas
and volumes by performing calculations with these differences., Critical arithmetic
will be involved if the coordinates describing the boundaries of an element are chosen in
a coordinate system so that the difference of the coordinates is incommensurate to the
true lengths, For example, if the coordinates of two points on a line are given by
(472.1,0, 0), (472.2,0,0), the length of the element must be nearly 0, 1 if the error in
performing the integration is fo be negligible,
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Even if the length is satisfactorily described, critical arithmetic can be involved
in defining the coefficients in the orientation matrix C . The coefficients in this
transformation matrix represent cosines of the elemeft surface normals and thus
represent ratios of the difference of the coordinates describing the element, If the
two lengths defining the direction cosines are a and b, avoidance of critical arithmetic

requires that the errors Ea and Eb be such that

Ea/a—Eb/b=ea—eb
is small compared with one,

Critical arithmetic may also be involved in development of the coefficients in
the differencing matrix, This matrix, like the integration matrix, requires an accurate
representation of the lengths of the element. Again, critical arithmetic will only be
involved if the difference in coordinates bounding the element are significanily different
from the projections of the element on the axis involved. Utku and Melosh: 6 show how
this error can destroy measurements of discretization error,

If critical arithmetic is avoided, the small manipulation errors involved in the
loading coefficients will be negligible, In linear structure analyses, the change induced
in displacements due to a relative error, "e", in loading is of the order of "e," Thus
an error in the eighth digit in the loading matrix will only imply an error in the eighth
digit in the displacement predictions.

Attrition errors in development of the stress coefficients are also small and can
be neglected. The number of calculations is of the order of 36;2 -18, For the solid
prism this indicates about 0,21 x 106 calculations, This ig small compared with
13. 4 x 106, and therefore, the maximum attrition error is negligible,

Critical arithmetic in stress coefficient generation, as for the loading matrix,
involves the data describing the location and orientation of the element in three dimen-
sional space. If these errors are avoided, manipulation errors in the stress coefficients
will be small,

If errors do arise, their effect may only be local, Errors in the stress .coeffi-
cients only affect the prediction of stresses for that particular element, Manipulation
error in stress coefficients will not affect the accuracy of any deflection predictions
per se.

Attrition errors in the development of the element stiffness matrices are small
and rarely significant, The number of the calculations required for developing the
stiffness matrix is of the order 8j3-4j2, For the rectangular prism this indicates
0.108 x 106, calculators, a negligible number compared with 13, 4 x 106, Critical
arithmetic again involves the basic geometric description of the structure.
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Though errors in development of the element stiffness matrices will be small,
they will, however, affect the response of the total system, To obtain a measure of
the importance of these errors, define a relative error measure, e, as the energy
implied in the rigid body modes divided by the energy in the elastic %ode with the
smallest energy, If the stiffness coefficients have no error, e, will be zero. For
simplicity, consider that the stiffness matrices are written in %e local coordinate sys-
tem for the element, (This simplification is no restriction since the matrix can always
be transferred into this system.) Then the stiffness matrix for a rod element can be
taken in form,

12 22 (3-9)

where A is the crossectional area; E, Young's modulus; "a, " element length and the E
and Ejj are the errors contributed by manipulation error, It is noted that the element
stiffness matrix for a torque tube and shear panel is the same as for a rod, within a
scale factor, so that conclusions for the rod have wider application,

Since the stiffness matrix is symmetrie, it is customary to develop only half of
this matrix and to reflect it about the main diagonal or to sequence the calculations so
that the symmetry of the matrix is insured. Therefore, it is assumed that Ejj = Ejj.
The symmetry of the exact matrix about the minor diagonal insures that the E11 = h22'

Calculating the strain-energy for a rigid translation and for elongation, the error
measure can be written as

2 2

By - Epy) dp
2~ 2 2
dg ag

(B - B 9p

RT (2+E..FE

(3-6)
11 ¥ B9

e

since Ell and El2 < <1 and

erT is error ratio for the translation rigid mode
dp is the amplitude of rigid translation
a5 is the amplitude of elastic deformation

The rigid body and elastic modes are exact regardless of the magnitudes of the errors,
The significance of manipulation errors is a function of the amount of rigid body motion
involved in the element as compared with the elastic motion as well as the distribution

of errors in the matrix, Since the relative errors will be of the order of 2-P compared
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with 1, the rigid body motion for the element must be much, much larger than the
elastic response if the errors due to the manipulation are to significantly distort the
response predictions, It is noted, however, that the relative values of manipulation
errors Ej; may represent the rigid body mode with negative energy. The implication

of negative energy in the computer simulation is significant even when small quantities
are involved.

Performing the same type of analysis for the beam as for the rod requires con-
sidering an element stiffness matrix of the form .

.
2+E
1+E,. 2 + E
12 3 12
Ky = 55 (+E)
a —2—E13—1-E232+E11
1+E,, + +E -1-E,_ 2+ E
14 3 24 1231 By
(3-7)

The beam representation includes two rigid body modes: a translation mode
and a rotation, There are thus two ratios to consider, Calculating the eigenvalues
and eigenvectors for this stiffness matrix and developing the energies associated with
the rigid and elastic modes treating unit length vectors, leads to the ratios,

2
o (Eqq - B9 ap
RT 0,142 2
g
2
. (Eqqy - 4Ejp T Eyg - 2B, - 2Ey5 +2E,, +2E,, +2E,,) 4ap
RR ™ 0.712 2
g
2
L BBy % (3-9)
0. 089 5
g
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where e, is the error ratio and q,, the amplitude of the rotational rigid mode.

Of the t#0 modes, the error in the rotational energy is much more significant

than in translational. Negative energies can also be implied, depending upon the
distribution of the relative errors in the element stiffness matrix. Again, the error
is important only if the rigid body mode deformation is much, much greater than the
elastic, though errors in beam matrices are 24 times more important than for rods,
tubes or shear panels.

It is concluded that the effect of stiffness coefficient manipulation error on pre-
dictions of response are only important if the element undergoes a large rigid body
motion compared with the elastic motion (2P compared with 1), The errors could be
expected to be a problem in the treatment of a cantilever rod or beam in which the
load is near the point of fixity so that elements far from the root would undergo only
rigid motions,

Errors in forming the global loading matrices are negligible and those in forming
the global stiffness matrix are rarely significant. The calculations are the additions
and subtractions of a sequence of components, Since few elements are added together
to form a particular coefficient in the structural equations (usually between 3 and 10 and,
rarely, as many as 15), the truncation error in the accumulation can normally be
disregarded.

However, critical arithmetic may be involved in adding incommensurate loading
or stiffness coefficients., In the case of the loadjn% coefficients, the relative errors
induced by critical arithmetic have an affect of 27F on predicted deflections. For the
stiffness matrix the affect of this critical arithmetic can be deterioration of the
process of solving simultaneous equations.

Guidelines for the Analyst. - The significant errors that arise in generation,
due to critical arithmetic, can be minimized by proper formulation of the structural
problem. This involves locating joints to avoid incommensurate adjacent stiffnesses,
sequencing elements to reduce series additior error, and choosing coordinate systems
to yield good measures of structural geometry,

I ns" binary place representation of the stiffness of an element is to be retained,
the ratio of this stiffness to the total stiffnesses at joints of this element must satisfy

k.
25P < El < 9P~ (3-9)
where k. is the stiffness of element i and kT is the total stiffness of all elements connected
to the jolint of element i,
Compliance with this formula insures that the generation error in the stiffness
coefficients is satisfactorily small, In accordance with equation (9), if p =27 and ten
bit accuracy (about three significant decimal digits) is required, the stiffness ratio

must lie between 2 + 17 (ie. 7.6 x 10-6 < ki/kT < 131,072). If 20 bit accuracy is re-
quired, 0.078 < ki/k'l‘ < 128,
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If the ratio of stiffnesses are excessive, the analyst can relocate gridpoints
so the ratios satisfy equation (9). A simple example of joint location so the stiffness
ratio is one is shown for the articulated structure of Figure 4a Since the stiffness
of the rod elements is proportional to AE/a and of beams EI/a3, the analyst defines
the spacing of joints of the structure to attain commensurate stn‘ifnesses at the joint
where the rod and beam join by spacing beam joints more closely than rod joints,

Figure 4b shows good location of joints for a membrane or plate. In the case of
the membrane, stiffness is explicitly proportional to tE(12(1-v2) and implicitly depen-
dent on the ratio of the sides and the squares and products of the side lengths., In
both cases equal stiffnesses are added for a sheet of uniform thlckness and isotropic
material when joints are located to define square panels.

In securing commensurate stiffness for membranes, the implicit factors can
be disregarded. This is shown by the data of Table V., This table lists the x direction,
U.., and y direction, V.., diagonal stiffnesses for 2 membrane as a function of the
side ratios. The table is based on Turner!s triangular membrane used for the four
elements of a rectangular panel, It is assumed that no external loads are applied to
the center joint and these coefficients are accordingly eliminated from the stiffness
matrix, The second and third columns give the diagonal stiffness for displacements at
joint one along the x and y axes. The fourth column of the table measures the error
in adding stiffnesses assuming that each panel is independently attached to an adjacent
square panel, The relative error in this case is defined as the absolute error divided
by the smaller number being summed., These data show that very large panel side
ratios result in little relative error. Thus, the network shown in Figure 4b satisfac-
torily avoids incommensurate stiffnesses for a uniform isotropic panel practically
independent of panel side ratios.

Since plate stiffnesses are proportional to length cubed, it is expected that panel
ratio will be 2 more important parameter for plates than for membranes. Using the
cubic relation, the ratios indicated in Table V indicate that panel ratios up to two will
result in negligible error. Panel ratios up to five have acceptable errors.

If incommensurate stiffnesses are to be added, the analyst can optimize the
arithmetic by numbering his elements (which accordingly sequences the additions and
minimizes error) so that the smaller stiffnesses are treated first. Figure 4c shows the
numbering of panels of a variable thickness plate to achieve this optimization.

In cases where the analyst is concerned with the treatment of structures involving
structural elements acting in parallel, the element representation should be chosen
so that commensurate stiffnesses are involved. For example, analysis of a wing
structure using plate elements for the skin and shear panel elements for the spars and
ribs will result in combining stiffnesses proportional to element length squared with
stiffnesses proportional to length, If these structures are to be treated, manipulation
error will be reduced by representing skins as membranes working in parallel with
shear webs (ribs and spars) or by using classical beam spars with the plates.
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Table V

Relative Membrane Stiffnesses

b
1
a

y

24 X,

b/a ull*

1 .91684372
2 1.5298992
4 2.9924205
8 5.991504

16 11.995061
32 23.997440
64 47.998709
128 95.999352
256 191,9997

512 383.9998

1024 797.9999

2048 1535.999

Y, V

tE
(1-v2)

*
Vi1

.91684372
.82399555
1.1608030
2.0809400
4,0419431
8.023968
16.017984
32.020992
64.034496
128.0652
256.1286
512.2563

0.3333

Rel.
Error*%*

M oM X K oM X K X O O o o
—
o

PR T LN BN BN N

*Diagonal stiffness coefficients.

**When panel is adjacent to a square panel,
b= 10, and p = 8.
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The analyst should be careful to choose coordinate systems to minimize errors
due to critical arithmetic in calculating the lengths and orientation of the elements
of the structure. In particular, he should locate the origin of his global coordinate
systems near the center of his structure to minimize the span of the coordinate number
magnitudes. Coordinate surfaces should be chosen parallel to as many of the elements
of the structure as possible to eliminate critical arithmetic in evaluating orientation
of these surfaces. (Incidentally, this choice will decrease the number of calculations.)
In sensitive cases, the scale of the structure should be selected to maximize the dis-
crimination of the problem geometry description. This is achieved by choosing a
scale such that the lengths of the element farthest removed from the origin are satis-
factorily represented by the difference of its coordinates, If the option to use local
coordinates in describing the geometry is available to the analyst, this capability can
be used to eliminate critical arithmetic in the definitions of element geometry and
orientation.

If the analyst is introducing element stress and stiffness matrices, these should
comply with the programmer's adjustments of generated matrices to eliminate manipu-
lation error. Manipulation error in the loading and stress matrices can usually be
neglected.

Guidelines for the Programmer. - To remove apalysis inconsistencies, the
prograramer should adjust final stress and stiffness coefficients, Stress coefficients
may be adjusted so that no stress is calculated when rigid body motions are defined.

Stiffnesses should be adjusted to insure that zero energy is involved in rigid
body deformations. For rods, for example, the matrix should be forced by making
Eq{y = Ej2 in equation (5). In this form, the elastic modes, and rigid body modes,
w%ﬂl be exactly represented and exact satisfaction of macroscopic equilibrium is indi-
cated. In the case of a2 beam stiffness matrix, errors should be adjusted so that the
matrix of equation (7) takes the form

[~ I
2 +4E
1+2E.. 2 + E Sym

6EI 11 3 11 :
kg; = DEI
2 - 4B, -1-2E;, 2 +4E
1+9E.. + +E._ -1-2E.. 2 + E
11 3 T ¥ 11 3 11
L .

38

(3-10)



In this case, both the modes and the energy have been adjusted to insure that
the rigid body modes are associated with zero energy. These adjustments guarantee
that regardless of what the deformations are, the energy absorbed in rigid body defor-
mation will be precisely zero. Note that by these adjustments, the program forces
symmetry of theoretically symmetric matrices.

To protect the analyst from ruinous critical arithmetic in the summing of stiff-
nesses, a check may be included of the relative size of elements added in calculating

the diagonals of the global stiffness matrix, This will eliminate the necessity for the
analyst to make this check himself,

Elimination Error

Elimination includes triangularization and forward and back substitution to
determine the primary unknowns in the displacement method (displacements) and the
calculations to evaluate the secondary unknowns (stresses).

The triangularization may be accomplished by Choleski decomposition, Given a
stiffness matrix, the decomposition involves evaluating the matrix L such that

Lt = x (3-11)

where L is a lower triangular matrix, This decomposition is always possible if the
stiffness matrix, K, is symmetric and positive semi-definite or positive definite,

For a large matrix the number of multiplications required to perform the decom-
position is equal to nw (w + 1) where n is the matrix order and w the average wavefront,
The wavefront is defined as the number of non-zero elements to the right of the diagonal
in row r of the matrix when the decomposition has been completed for all rows less
than r. About as many additions as multiplications are required in performing the
decomposition. In addition, each row of the decomposition requires taking the square
root of the diagonal element,

The forward substitution process consists of solving for y in the expression
Ly=F (8-12)

where F is the global loading matrix loading., For a large array this operation requires
n (w + 1) multiplications and division, and an equal number of additions and subtractions,
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The back substitution process involves the solution of the equations

1Ta =y (3-13)

for A, the unknown displacements in the structure; i. e., primary unknowns, This
operation also requires n (w + 1) multiplications and divisions and an equal number of
subtractions and additions.

Calculations of the secondary unknowns involves the multiplication of the element
stress matrices by the vector of primary redundants in accordance with equation (2-26).
This calculation requires a maximum of 6 (2j - 1) multiplications and additions per
element where j is the number of generalized coordinates for the element.

This process of evaluating the primary unknowns can take advantage of the matrix
symmetry and sparseness and thus tends to minimize the number of calculations
involved, Errors in this elimination include inherited, square root, and attrition error.
Attrition errors involving critical arithmetic require special consideration,

Inheritederror is the error existing in the coefficients of the matrix due to prior
arithmetic; i. e., the generation calculations. As indicated few calculations are involved
in developing these coefficients, critical arithmetic can be avoided, and the consist-
ency of coefficients can be insured. The relative inherited errors will usually be less
than 2-P, Representation of a physically realizable system is insured.

The errors involved in obtaining square roots are larger than inherited errors.
Algorithms for taking the square root are contained in codes of the computer systems
software, These codes develop square roots with a maximum absolute error of one part
in the last digit of the floating decimal mantissa, The maximum relative errors are
less than +24-p, In IBM Fortran IV software, these errors always result in overestimates
of the square root. The average relative error is much less than the maximum, For
components from 1 to 1029, the square roots have an average relative error of -0, 461 x 10~
and the maximum is -0, 148 x 10~ when p = 27,

Attrition errors cannot be expected to destroy the consistency of results of the
elimination process until problems of much larger order than are currently being
treated are involved. If attrition errors are to be significant, 2nw? + 4nw must be
greater than or equal to 13,4 x 106, In the analysis of aerospace structures, wave-
fronts approaching 200 have arisen, This is unusual, however, In analyzing antenna
reflectors, the average wavefront is about 50, The maximum wavefront encountered
by the authors occurred in analyzing a quadrant of a 90-foot earth station reflector.
Here w was 83 for 436 equations, Thus, for these structures a minimum of 950 equa-
tions and an expected 2600 equations could be treated without concern for attrition
error, It is noted that even if the number of calculations is greater than 13, 4 x 106,
attrition errors will not necessarily be important since this is an upper bound error
to attain a relative error of five percent.
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Though consistency of answers may be assured, small attrition errors may
incur significant error in response predictions. This can occur due to the propagation
of these errors with amplification, the cumulative effect of many errors, or critical
arithmetic. The next paragraphs examine the effect of these complications in the
numerical analyses of structural systems consisting of a series of finite elements,

Errors in Evaluating Primary Unknowns, - The critical structural systems
involved in displacement analyses are pure series systems such as shown in Figure 5a,
b, ¢, dand e. Pure parallel systems are not critical for manipulation errors because
they result in small systems of equations whose solution involves few calculations.

The systems in Figure 5 will be examined to determine the magnitudes and
characteristics of manipulation errors. Figure 5a shows a simple series rod system,
Figure 5b shows a cantilevered beam represented by finite elements, This figure
could also represent a series of rectangular prisms. Figure 5c¢ represents a cylindrical
shell, The system of Figure 5d consists of a number of rectangular panels representing
a membrane, Each panel is subdivided into four triangles and provides resistance
only to loads in x-y plane. Figure 5e illustrates a plate system providing resistance
only to z direction loads. All systems are clamped on the right edge and free on the
left, :

In the sequel regular, increasing and decreasing systems are considered, In
the regular system, all finite elements have the same stiffness, In the increasing
system, the stiffness of each successive element is twice the previous, proceeding
from left to right. In the decreasing system, each successive element has half the
stiffness of tl‘l’e previous element,

Series rod systems error analysis: The stiffness matrix for the series rod
system is given by

W, (1+0)
-W. W_.+W Sym,
K = 112 (3-14)
0 W, W,+W,
"W, W,-1+W.
L 1 1 1

where W_ = Ar Er/ar’ r=1, 2, 3. .. f, is the axial stiffness of the rod element
and £ is fhe nimber 6f finite elements (rods). For the rod case f is also the order

of the stiffness matrix, o = relative stiffness of a spring located at the free end of
the rod.
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Disregarding the inherent error, the first and second diagonals of the decom~
position matrix 1. are given by

1/2

y/ (1+oz)l/2

11 Wl

W, o
o 1/2 1
bos = W, (1 A +oz)) (3-15)

Relative values of the first and second diagonals of the L matrix can be defined by
dividing these terms by the values of the diagonals when the spring stiffness « is
zero,

This gives

1+e) Y21

(o]
I

11

W, 1/2 1
ey = (L + W, v a) (3-16)

If o were introduced in the rth equation, equation (16) would also apply for the rth and
r + 1 st diagonals, Therefore these equations indicate how an added stiffness in a
given diagonal effects the neighboring diagonal.

|

Assuming that all the Wj are equal (regular system) and interpreting @ as an
error introduced by manipulation, equations (16) can be studied to show the character-
istics of error propagation in the series rod system. This is achieved by solving
equations (16) simultaneously to eliminate o and express €11 in terms of €990

A plot of this relationship is shown in Figure 6, This curve shows that when a
positive stiffness perturbation (@ >0) is introduced in diagonal r successive diagonals
retain the perturbation with reduced magnitude. The rate at which the perturbation is
damped can be deduced by repeated use of the data in the upper quadrant of Figure 6.
The curve shows that positive propagations are bounded by an asymptote at\/'zgg 1,
Thus, even if a positive relative error of infinite magnitude is introduced at'row "r'
it will be reduced to a relative value of 0, 414 in equation r + 1, The lower left-hand
quadrant of Figure 6 shows that a negative perturbation in a diagonal results in an
increased negative perturbation in the next diagonal. A negative asymptote exists
where the input perturbation has a relative value of -1, Then the next diagonal will
have a relative perturbation of minus infinity.

A physical interpretation of the propagation of negative « is that if a load is
introduced at joint "r" in the plus direction, then a negative infinite displacement
occurs at some joint greater than "r", Thus, in this case, solution of the structural
equations is physically meaningless. Mathematically the perturbation has been such
that the implied stiffness matrix is indefinite.
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Tighter restrictions can be imposed by considering the singularity of the
stiffness matrix, K. One restriction on admissible negative « is that successive
equations must not be dependent. This condition is represented by the Choleski limit
on Figure 6. It occurs when the relative negative perturbation is -5, since, in this
case, 'Z22 =0,

A still tighter restriction is that the total stiffness matrix must not be singular,
The determinant of the regular rod stiffness matrix is W12f (fa + 1)2. Therefore,
the maximum error, «, that may be introduced in the first equation to avoid singularity
must be - 1/f, Conversely, if the error is -2-P, 2P equations (elements in series)
can be freated, The relative error in the determinant is

e =2Pf (3-17y

The neutral propagation line shown on Figure 6 defines the regions of stable
and unstable propagation. Stable propagation is defined as propagation in which the
perturbation is reduced in magnitude in successive diagonals of the decomposition
matrix, As shown by the figure, all positive perturbations involve stable propagation
whereas all negative errors involved unstable propagation.

Neutral propagation arises due to the fact that the numbers are represented
with a finite number of places. Then, a small positive or negative error can persist
due to the fact that the nearest finite number is used in the numerical analysis. The
greater the number of places involved in the arithmetic, the smaller is the range of
neutral propation, In the propagation plot of Figure 7, a neutral stability region exists
around the intersection of the axes.

Figure 7 shows plots of the attennation and amplification of o as a function of
the number of successive equctions after « is introduced. Amplitudes of stable dis-
turbances are diminished slowly, whereas unstable rapidly increase.

Figure 8 is similar to Figure 6 but is constructed for cases in which the stiff-
nesses of adjacent elements differ. Study of these curves confirms that positive per-
turbations, though they increase, never cause singularity. Negative perturbations are
deleterious only when in the unstable region, In addition, these data show that if the
second element is stiffer than the first, the relative perturbation is decreased in the
successive equation and conversely. The figure shows that non-uniform rods can
have more than one region in which neutral stability occurs. These are at each
intersection of the propagation curve with the neutral line. The plus asymptote
and Choleski limits have not been plotted to avoid clutter,

The determinant of the stiffness matrix of the increasing system can be written
as a product of a number of factors, only one of which depends upon @. This factor
is (a + 2f-1/(2f-1))2, Therefore, the matrix will be singular for f large, only if
a=-0,5,
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The determmant of the stiffness matrix of the decreasing system has an «
factor, (o + (2 -1)-1y2, Thus, this matrix will be singular when ¢ = -27", The
decreasing system is therefore more sensitive to error than the increasing system,

Computer experiments verify this analys1s If f = 20 for the decreasing system,
the stiffness matrix should be singular if @ = ~ (220-1)~1, Then e 1- 0.-952 x 106,
Computer experiments show that the matrix is positive definite whén €11~ -0, 482 x 10-6

and indefinite when e =-0,961 x 10-6,

For an irregular structure, growth in the error in the diagonals can be predicted
by repeated use of equations (15) or estimated from Figure 8, These ways are simpler than
developing the determinant of the stiffness matrix,

The propagation curves of Figures 6 and 8 involve what may be called conservative
propagation, It is conservative in the sense that if a succession of equations are
treated the sequence of treatment will not affect the relative perturbation propagation
through the complete set. The propagation can be made unconservative by introducing
new perturbations due to manipulation errors in performing each step of the decomposition,

To estimate the maximum number of rod equations that can be treated without
concern for error propagation, it is assumed that a negative error is introduced in
each row of the decomposition due to inherent, square root, or attrition error. For a
regular rod, propagation is nearly stable so these errors will be summed, Assuming
all this error is introduced as a perturbation in the first equation, the number of

equations that can be treated for a regular rod without an indication of singularity in the
Choleski process is given by f = 2P/2 % 6000 if p =27, Fewer equations can be treated

if the rod elements decrease in stiffness and more if stiffnesses are increasing,

These small perturbations, however, can introduce significant errors in the
solution even if they are neutrally stable, To consider the implications of these errors
in the decomposition upon the solution for the rod, assume that the typical perturbed
equation is given by the difference equation

- Eaur—l + 2Eﬁur_Eaur+1 =0 (3-18)

where E and E_, differ from 1 by o and 8, and r is the number of the degree of
freedom® (joint B sequence number). Solution of this difference equation is given by

E E, \2 1/2\*
u_=C ———3+(_§-) -1 /

1/2\ r
E E,\2
+c, | B+ (——ﬁ) -1 (3-19)
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Considering the rod pinned at the left and loaded at the right, the boundary conditions
are

= e _ _ P-a
110 0; Ea'uf-l + EB uf IND (3-20)

Using these conditions to define the arbitrary constants, C, and CZ’ letting E =1 +¢,

E,=1+8 with @ ~8 <<1 and expanding terms in a binominal series gives the” displace-~
ment as

U, w~ LA%;E<1—f[B—a] -o:) (3-21)

When o =8 =0, equation (21) gives the same displacements at each joint as the solution
of the differential equation for the rod, regardless of the number of joints involved.
The relative error when o # 0, 8 # 0 is given by

e~ -£(B-a) (3-22)

This error is independent of r; the joint sequence number, and proportional to the total
number of equations or finite elements considered.

Suppose displacement boundary conditions are imposed so that U= Oandu,.=1,
Then the displacements to a first order are r/f and are independent of ~ manipulation
error,

The expansion of equation (19) for e~ B <</ and ro <<1 makes if apparent that
the relative error can at worst vary linearly with the joint number. The maximum
error will be of the order given in equation (22), Taking o ~~ Bax2~P the maximum
error in the displacements is less than five percent when p = 27 if £ < 3. 35 x 106,

Critical arithmetic is involved in the decomposition process in evaluating diagonal
elements of the decomposition matrix, These involve calculations of the form

r 4 2 1/2
= - Jr
lrr ( Krr jz=:1 £ijj ) (3-23)

where the £;,. is coefficient in row j column r of the array when row j of the decompo-
sition is being formed. Since all the E-j are positive when K is positive definite, as the
decomposition proceeds a particular diagonal is persistently reduced. The stiffness

matrix is numerically singular if the total reductions in the diagonal result in a relative
zero for the diagonal,
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The singularity can be predicted by estimating the decomposition diagonal using
its physical interpretation, The rth diagonal is the square root of the stiffness in the
rth degree of freedom when all lower freedoms in the set of equations are unrestrained
and all higher are fixed. It measures the force to induce a unit displacement in the rth
freedom,

Consider use of this criterion for the series rod systems, Assume that equations
are sequenced from root to tip. The numerical singularity will be exhibited first at
the tip joint. For the regular rod, the square of the last diagonal of the decomposition
matrix is, by its interpretation, (AE/fa). Its original value is (AE/a). Then, the set
of equations will be singular when

AE ~-p AE P
—f; E 2 T or, f 2 2 (3—24:)
The relative error is given by
e = 2-Pf (3-25)

With joints sequenced from root to tip, the increasing system will result in fewer
and the decreasing system greater values of f than given by equation (25). For the
increasing system, the deflection of the tip of the f joint rod for unit load when joints
inboard are free to move is

f .
1 -i 2 -
uF = - 2: 2 = W (1-2 f) (3-26)
1 i=1 1

The stiffness is the reciprocal of u £

-

Since the original value of the fth row stiffness is W1 2t-1 the matrix will be singular

when

Wy

2

(1-2h 7 <2 Pw 2t (3-27)

or
f ~p.

For every reduction in f by 1, one more accurate binary place will occur in the
determinant, i.e.

e = f/p (3-28)
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Figure 9 shows the results of computer tests demonstrating the validity of
this critical arithmetic analysis for the increasing rod system, Singularity occurs
when expected. As f is reduced, the accuracy of the determinant varies nearly
as predicted. Variances from the curve can be explained by errors in forming
square roots in the Choleski process.

Errors in the forward and backward substitution are relatively small if the inherent
error in the coefficients is negligible, In the forward substitution, the worst error is
associated with evaluation of the last unknown, 2 This is formed for the regular rod
by calculations of the form

j
ve = 2 P. I a (3-29)
j =1 d i=

J

where 11 a, is a series multiplication with j components. The evaluation of

i=1
vy £ requires the summing of terms of a vector scalar product. Each term summed
depends upon the series multiplication. As indicated in Section 2, the errors in form-
ing series multiplications are small and errors in taking vector scalar products would
be expected to be small, Consequently, errors in forming g are negligible unless
2 fw2 > 13,4 x 106,

Critical arithmetic may be involved, depending upon the signs of the Pj loadings,
When all the loads are in the same direction, yg involves the series additions of compo-~
nents and, thus, the final sum will have small relative error as long as the number of
additions is less than 26,8 x 106, When the signs differ, the relative error of the
result will also be small though more difficult to estimate since it is measured by the
sum of the absolute values of the series components.

The operations involved in back substitution are comparable to those in forward
substitution involving, instead, the summing of the deformations.

It is noted that when the right hand of the rod is assumed to be fixed, a physical
interpretation of the substitution processes is possible, The forward substituion
defines the loads in each element of the structure. The back substitution involves a
summing of the incremental deformations of each of the elements of the structure to
obtain the total deflections of the structure,

Since the errors in the forward and back substitution process correspond to the
errors in series operations, the following characteristics can be anticipated for each
process separately,

1, The absolute error can be expected to change its rate of growth by a
factor of 2 when the answers change by a power of 2, Between changes,
growth will vary linearly, The calculated answers will always be less
than the exact if all loads have the same sign,
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2. Relative errors will increase at worst linearly with the number of
components (equations) and will be insignificant for p = 27 unless
13.4 x 10 components are involved, in accordance with equation (2-14),

Confirmation of these characteristics are provided by computer tests for series
of rod finite elements. These data are summarized in Figures 10 and 11,

Figure 10 shows the growth of absolute error for back substitution with successive
equations in the back substitution process. The decomposition in this case involves
no inherent error. These data were devéloped based on a 400 element rod with a tip
load of (228~1), This loading maximizes the error when p =27, Predicted deflections
are less than the exact at all joints, Changes in slope of the error curve occur when
the exponent of the answer changes by a power of two,

The maximum relative error is 1,089 x 10-6 and occurs at the tip because the
exact answers vary linearly with the number of the equation being treated. The lower
curve of Figure 11 shows the growth of the maximum relative error with the total
number of equations treated. These data were obtained by analyzing rods with 100,
200, 400, and 1200 elements, The data exhibits expected characteristics. It is noted
that this curve is not bounded by eguation (2-14) since the number of components does
not lie in the critical range; Rc.

The following characteristics can be anticipated when forward and back sub-
stitution are combined so that the errors in forward substitution constitute inherent
error to the back substifution:

1, The absolute error will vary linearly with a growth rate equal to the sum
of the forward and back substitution growth rates, It will tend to be
insengitive to the value of the answer characteristic since the growth rate
increases in forward and back substitution and equations are freated in
reversed sequence,

2. Relative errors will increase linearly with the number of equations, The
relative error is bounded by letting

N = fE-1)
2

in equation (2-14) since each of the yg_,. are found by adding values involving
the sum of (f-1) components where r is the equation sequence number in
back substitution. Then, if the error is to be less than five percent, f
cannot exceed 7300,

Figure 12 shows the measured growth of absolute error for forward and back
substitution combined. Again, the decomposition has no inherent error, These data
were developed for the 400 element rod with a load of (228-1) at every joint, This
loading maximizes the error when p =27, These data exhibit an error which is a
linear function of the equation sequence number in the back substitution process.

a3




240
200
AE/c:i =]
1 2 4 ... 40
2 3 4 . 0 (228_])
160 Equai‘ion Sequence in
Back Substitution
wi
/
G120
o
5
o
]
<€
80
£ /
OO 5 10 15 20

Equation Number in Back-Substitution

Figure 10. Rod Back Substitution Error

54




4

Relative Error ~% x 10

4.0
3.0 //
2.0 X
54
<b0
1.0 /
e (21
e S T T |
1 2 3 4 ... f!
Structure
. (Regular Rod)
100 300 500 700 900 1100

Number of Elements ~f

Figure 11. Rod Substitufion Errors

55




Absolute Error

500

400

300

200

100

| |
AE/a. =1 F, = 2381

|_.—_.._._ﬁ___.. —

1 2 3 4 ... 400

Equation Sequence in Back

Substitution (Regular Rod)

/

5 10 15

Equation Number in Back Substitution

Figure 12. Rod Total Substitution Error

56

20



The upper curve of Figure 11 shows the maximum relative error as a
function of the number of equations for the combination of forward and back sub-
stitution, The errors are small, The relative errors for the combined processes
involve 3. 57 times the relative error of each process separately, This factor reflects
the fact that, in the worst case, the error growth rate and the relative error at a
particular growth rate double when the number of components is doubled.

These data demonstrate that the error in substitution in series rod systems is
small, The curve of Figure 11 is a straight line, In the worst case, the relative error
is givenbhy e = 0,959 x 10-8 £, Therefore, the substitution processes in these series
rod analysis will yield answers with less than five percent error unless more than
5.2 million elements are involved. Thig is a better bound than the 7300 obtained by
disregarding calculation details,

Series beams systems error analysis: The stiffness matrix for the series beam system
is given by

where

W, = EiIi i-1, 20f

E. = Young's modulus of segment i
I. = bending moment of inertia

a. = segment span
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aand B = relative normal displacement and rotational springs at joint 1.

Generalized coordinates are the displacements normal to the beam and the rotation of
each joint, Shear deformations are neglected in the representation. Equation (30) is
the stiffness matrix for the beam of Figure 5b. Note that there are twice as many
equations as there are finite elements. The first of each pair of rows of the stiffness
matrix is associated with force equilibrium and is the '"force row'". The second of
each pair is a "moment row"

To examine the propagation of « and B, it will be assumed that when one is
non-zero, the other is zero., The relative values of the first and third diagonals of the
decomposition matrix assuming 8 = 0 are given by

1/2
e;; = (L+a) 2

3 1/2
W. /a
eg3 = (1 T/ T ) -1 (3-31)

3 I+
Wz/az (t+e)

The relative values of the second and fourth diagonals, assuming o =0, are given by

€5y = (1+[3)1/2—1

€44

W, /a 1/2
(1+ 1/*1 48 ) -1 (3-32)

w,/2, (1+4P)

Equations (31) and (32) also define error propagation between any pair of rows r, r +1
and a second pair r + 2, r + 3 for the series beam when no error has arisen in prior
decomposition, Thus, conclusions with respect to these apply at any point of decomposi~
tion,

Figure 13 shows a plot of the stability characteristics of the pairs of diagonals,
This figure is based on a regular beam, i.e,, W_=W_ _ . This curve exhibits the
same perturbation propagation characteristics ad the deries rod curves shown in
Figure 6. Positive perturbations coverage and negative diverge more rapidly, however,
It is noted that the branches shown to the left of the minus asymptote also occur for the
rod, though they are not shown on Figures 6 or 8. Figure 13 curves indicate that
moment perturbations are more important than force,
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Examining equations (31) and (32), it can be seen that as successive stiffnesses
decrease, the process is increasingly sensitive to perturbations, The new propagation
curves will be rotated similarly to the way the rod curves of Figure 8 rotate as stiffness
ratios decrease. If both @ and B are non-zero, it can be shown that curves for €33 are
not sensitive to small values of « and €44 for small B, However, the curves do vary
with both of the perturbations.

Because of the coupling between the @ and B perturbations, the beam may have
more than two neutral stability points. This is reflected by equating the general
expression for €33 involving both ¢ and B,

- Wl/ 2" (1+48) 1/2_
©33 o Wz/"‘zg 4< [1 +Z] [1 +8 ]_ 3/4) ' (3-33)

to e;1. Then for the regular beam, regions of neutral stability are seen to arise at
a =0 for any B and at = - 1 for any «.

The number of elements that can be treated without degeneracy if o # 0 and
B = 0 is twice as many as for the series rods, i.e., ifp=27, £=134x 106, If
a =0 and B# 0, the maximum number of elements is 33. 5 x 106, If it is assumed that
negative errors arise in every equation, 3000 equations (1500 series beam segments)
can be treated if p = 27,

Consider the implications of persistent small errors in the final structural
equations due to decomposition errors. The difference equations are of the form

-6w -36_.,a + 12EW_+E 8 a-6W +36 .,.a=0
ar a'r T

r-1 r-1 +1 T+l
3w r-1 + er_la + an r T 4EBera - 3Wr+1 + er+1a =0 (3-34)

where r and 8 are the displacement and rotation of joint "r" Eq =1 +a, Eg=1+ B,
Ey=1+aand o, B, and o are small errors of the order of 2-p,

To solve equations (33), let them first be replaced, approximately, by a set of
differential equations, Then the solution of the differential equations will be studied,
For this purpose let

wrl - % Wy "Wy » _g_:'l
wr” = (W g m AW VL) e _2_2;‘_;/_
er, - %(erﬂ “8p) ~ '—g_er—
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then equations (27) can be written as

24

2W“ + 40w +2§ a+
T T T 3

ga=20
T

WS+ aw +.er" a +(6+4B) 0 a =0 (2-85)

Since each of the errors will be small, it will be assumed that the effect of @, B, and y
can be examired separately and the effects of simultaneous occurrence evaluated by
superposition,

Table VI summarizes the four cases of interest., The second column of this
table summarizes the characteristic equations of the set of differential equations for
each case. The third column of the table cites the general expression for the solution
of the equation, This expression is obtained by expanding the solution of the equations
in powers of rA, dropping terms of higher order than rd A ° and using the characteristic
equation to eliminate terms involving A4,

Examination of the expressions in Table VI provides some characterization of the
effects of manipulation errors in final response predictions, It is noted first that to a.
first order, all the constants in column three with the same subsecript are equal, i.e.,

A0 = Bo = Co = Do when o, B, y<<1

Further, it is noted that the first two constants in each equations are determined, to a
first order, by the displacement boundary conditions, The other two constants are
defined by loading or displacement boundary conditions of redundant supports.

It can be seen that the solution of Case 1, where all the errors are zero, is the
exact solution of the differential equation for a beam. It is easy to show that this solu-
tion is also the exact solution of the difference equations for the finite element, Thus,
the replacement of the pair of difference equations by differential equations is exact,
under the assumption of no manipulation errors, regardless of the number of equations
involved in the analysis.

Case 2 involves errors occurring in every moment equation, The error is
assumed to exist on the diagonal of the stiffness matrix., In this case, since both the
constant 85 and By cannot be zero, the error is proportional to Br~ regardless of what
displacement boundary conditions are involved. If all the By > 0, i e., for a cantilever,
the error reduces deflections at all joints, if B> 0, Conversely, if manipulation error
is less than zero, all deflections are increased,

In Case 3, it is assumed that persistent manipulation errors are introduced in the
force equations on the diagonal. The examipation of the expanded expression for dis-
placement indicates that depending on boundary conditions the error may vary as or4
or ar2 when ro is small, If all the arbitrary constants are greater than or equal to
zero, the error reduces deflections at all joints if the persistent error is greater than
zero, and conversely, The error contributions to the elastic modes (subscripts 2 and 3)
are less than those due to B, but for some displacement boundary conditions the rigid
modes are distorted.
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Table VI

Solution of Beam Error Equations

n ’y
-2wr+4 awr+2a0r+ §a0r =0

. 1"
-6w]':+ Y Wr+ab’r +(6+4 8 )a0r= 0

Characteristic
Case Equation General Expression for w Particular Solution
1 )\i=0;i=1,2,3,4 A +Alr+A2r2+A3r3 ]?a.2r3 3f -1
0 3E1 2r 2
2 .2 2, ¢ 3, 1B 3.3 3
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Case 4 involves the persistence of v at a constant value, This error arises in
the coupling terms between the displacement and rotation coordinates in both the force
and moment equations, It can be seen that the error involves terms in r y and r3vy
primarily, Thus, whereas Case 1, 2 and 3 involve even error functions, this case
involves an odd function. Errors may decrease or increase response predictions,
depending upon boundary conditions. Generally, these errors will be more significant
than the B errors and less significant than « errors.

Considering all the cases together, the error may vary up to the fourth order in
the number of equations involved. It may be either positive or negative at any given
station, depending upon problem boundary conditions, In the worst case, the errors
accumulate and the maximum elastic error is of the order 4 «/10. Therefore, with
@ m~ 2-27 it can be anticipated that in the worst case about 190 beam elements in series
can be treated without answer invalidity due to the accumulative effect of small errors,

The fourth column of Table VI lists the particular solutions for a tip-loaded
cantilevered beam for the first three cases. These equations are solutions when
fA<<1l, Case 1 shows that the exact solution is obtained when no manipulation error
exists. Case 2 and Case 3 show that the error in deflection predictions vary as the
third power of the total number of beam elements, inversely with the joint sequence
number, and linearly with error magnitude. Near the tip of a typical beam (where
r - £, f>>1), the error reduces deflections by a magnitude proportional to f2« of 28,

Critical arithmetic for decomposition series beams of matrices takes the same
form as for series rods. The most significant errors are made in evaluating the
diagonal elements of the decomposition matrix,

Consider use of the singularity criteria for the series beam. For the regular
beam, with equations sequenced from root to tip, the square of last diagonal is by its
interpretation 3EI (fa)3. Its original value is 12EI/a3 Then the set of equations will be

singular when

SEI o0 12EL . .. B2 (3-36)

f333 - ad 3

Thus, when p =27, 370 finite elements will yield meaningless predictions of deflections,

As for rods, the increasing system results in fewer and the decreasing in greater
values of f than given by equation (36). The force row will involve critical arithmetic
before moment since the force diagonal depends on the number of elements cubed while
rotation depends on the number to the first power, Singularity will occur theoretically
when the ratio of original to final stiffness is greater. than 2P, This is given by

K. w; > 2P = 268x 10° whenp =27 _ (3-37)

where K. is the stiffness of the last beam segment in displacement and w

£ is the tip
displaceinent,
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The first three columns of Table VII summarize the evaluation of K¢ wy for the
increasing series beam when f =12, 14, 15, 16, and 17. wy is evaluated by integrating
the beam differential equation for the increasing beam stiffness distribution, These
data show that only 16 segments can be treated before singularity occurs and answers
become meaningless.

A maximum relative error, due to decomposition, can be defined by

e = w2+ 1D (3-59)

Note the similarity of this equation (2-1). Equation (38) is an error bound established

by assuming that an error of one part occurs in the last binary place of the original
stiffness coefficient, K¢ and dividing this error by the stiffness of the final decomposition
diagonal, This formula is only meaningful before singularity occurs.

The last four columns of Table VII summarize the calculations of the relative
error predicted by equation (38) and values obtained from computer measurements,
Computer measurements used Gauss triangular decomposition, At each joint, the
force equilibrium equation was written before moment equilibrium, Computer results
are much better than expected. Results are obtained beyond predicted signularity.
Actually, singularity was not indicated until 19 elements were involved in the beam,
Nevertheless, the critical arithmetic bound is regarded as excellent. It provides a
close bound for error when the errors are small and it shows the trend of increasing
error. It's imprecision is attributed to the sensitivity of this calculation, on the com-
puter, to manipulation error,

The calculation for singularity can be simplified at the loss of some accuracy.
This is achieved by assuming the beam is uniform with the smallest stiffness to evaluate
wf. This approach indicates singularity when f = 14 and the relative error is given by
e = f(p-3)-1,

Relative errors in substitution for beams have characteristics similar to rod
substitution errors, The worst errors arise when each joint is loaded with a force
and a reinforcing moment with a load valued at the critical component (228-1 for p = 27).

Figure 14 is a plot of the maximum relative error in substitution for a beam as
a function of the number of beam elements involved. The decomposition was exact,
The relative error varies linearily with the number of series beam segments. The
relative error is given by

e =0.134 x 107"

If this error is to be less than five percent, less than 3, 700, 000 beam segments can
be treated,
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Increasing Beam Critical Arithmetic Error

Table VII

12
14
15
16
17

V£, Exact Kf Kewg 2p'1~X(Kf) e Ve, Computed e,Actual
449.320102 6x2"t  5.53x10° 8192 5.50% 425.54143 5.29%
633.332107  6x23  31.1x10° 2048 30.9% 470,11828 25.87,
737.332720  6x2™*  72.5x10° 1024 71.9% 324.53154 56.0%
849.333027  6x2%° 167.x10° 512 1669 220, 24451 74.1%
969.331800  6x2"®  380.x10° 133.74655 86. 29
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Other series systems: The effects of manipulation errors for series rods and
beams can be extrapolated to other series systems, It is argued that the rod and beam
systems represent the basic behaviors of any structural system. This is in fact the
basis for the lattice and framework analogies proposed by Hrennikoff 17 These have
been used with some success for analyzing structural systems, Another argument
suggesting extrapolation is valid, is that errors in rod and beam analyses differ in
intensity rather than characteristics.

Series systems of torque tubes and shear panels will exhibit the same errors as
series rods., Series systems for the finite element for the zeroth harmonic of the
cylinder glven by Percy. et all8 membrane representations such as those of Turner,
et al® Argyrisl9, and Hrennikoffl7, and representations of elastic solids such as those
of Melosh20 w1]l exhibit errors with intensities similar to those of the rod systems.
Errors will be more significant, however, due to the increase in attritition error caused
by greater stiffness matrix wavefronts, as the element goes from a one to a three
dimensional representation,

Table VIII cites the results of experiments of some of these series systems.
These results verify expectations, Results for the series rod are included for com-
parison, Since the stiffnesses for the cylinder were imprecise (because computer
generated rather than input), these results reflect inherent errors which do not exist
in results for the membrane and cube, In the Turner membrane representation a square
panel model was developed first and the central joint equations eliminated before stiff-
nesses were summed. Indicated errors are only those due to manipulation. Idealiza-
tion error is eliminated by developing the exact solution for system behavior based
upon its intrinsic exact representations. For the membrane, for example, the case of
uniaxial tension is treated since the elements represent this exactly if determinante
boundary conditions and uniform loading are treated. The same situation exists for the
rod, cylinder and rectangular prism,

The fourth and fifth columns of the table permit comparing the exact solutions
with those calculated. These data confirm the trend of increasing error with the increase
in the average wavefront of the stiffness matrix, Examining the membrane results, it is
also apparent that with the same density, the manipulation error varies with the choice
of idealization,

The last column of Table VIII indicates the number of elements that were treated
on the computer before singularity was sensed. Data in this column also shows that
analyses breakdown due to manipulation error is aggravated be increasing the average
wavefront of the matrix,

Series systems of plates and the first cylinder harmonic can be expected to behave
like beam systems. Analysis of these systems will be sensitive to errors in the decomp-
sition process and accuracy may be controlled by critical arithmetic. Attrition errors
will be worse than those for beams because of the increased stiffness matrix density.
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Table VIII

Series Systems Manipulation Errors

¥ w Voo
Element Type fa nb wc Exact Tip D) Calculated Calculated Sd
Rod 100 100 1.99 .152587 .152588 .152584 >4000
Cylinder, Zeroth 100 402 6.46 .212209 .212206 .212199 2100
Membrane, Square
Turner 100 401 6.42 . 143051 . 143045 . 143000 500 S >400
Argyris 100 401 6.42 .889079 .888131 . 888643 150:>s:>1oo
Hrennikoff 100 401 6.42 .286102 .285927 . 285882 500
Prism, 1x2x3 25 305 18.0 .260417 . 233177 . 233177 49
Beam 100 200 3.48 . 666667 666666 .655364 800>S 400
Cylinder, First 25 102 6.32 .803014 .625960 .695000 17
Plate, Square 20 120 9.22 .733321° .756491 .757842 >200
&€ = Number of finite elements
bn = Number of equations
v = Average wave front
dS = Number of elements causing singularity (p=27)

e Calculated solution, p=36




Table VIO shows solution results for beam, cylinder first harmonic and sguare
plate series systems. The plate finite element is that of Bogner, Fox, Schmit2
Errors indicated are due only to manipulations in elimination, The data shows that
as the average matrix wavefront increases, error increases. Early failure of the
cylinder analysis as a attributed to its large inherent error. Only eight significant
decimal digit accuracy was used to define the stiffness matrix.

Series systems of curved shell elements are regarded as mixed systems since
they involve parallel subsystems of rod-like (membrane). and beam-like (plate) behavior,
Mixed systems are beyond the scope of this study.

Errors in Evaluating Secondary Unknowns, - These are due to the fact that the
operation mtrmsma]ly involves critical arithmetic, Determination of stresses from
displacements is essentially a differentiation operation, The characteristic form of
the calculation is

s =tAr—Ab+1
i X -x +1
r °r

where t is a factor involving material constants and x.. is a coordinate of an element
joint, As the network interval approaches zero, successwe displacements (Ap and

Ay 4+ 1) approach each other. The stress predictions become meaningless as the evalu-
ation of the stresses involves the subtraction of two components which are nearly equal.
Since the useful information is contained in the lower bits of the Ay, critical arithmetic
is intrinsically involved,

Anderson and Chrisi:iansen22 point out that in the case of an incompressible
material (Poisson's ratio nearly 0, 5) critical arithmetic is involved even when the joint
spacing is large. Stresses calculated for nozzles under nearly pure dilatational
deformation indicate an oscillating sign stress pattern throughout the network This
type of response aggravates the critical arithmetic error.

Guidelines for the Analyst, - The analystts formulation of his structural problem
has an important influence on the amount and distribution of manipulation error. His
selection of joint numbering, joint spacing, and structural idealization can insure his
analysis accuracy almost independent of the computer and program he selects,
Idealization defines the mathematical model of each finite element, thus fixing matrix
sparseness and critical arithmetic involved,

In displacement method computer codes the sequence in which joints are numbered
corresponds with the sequence in which equations are {reated in the elimination process,
This enables the analyst to eliminate critical arithmetic in the decomposition for series
systems, If non-optimum sequencing is used, the singularity criteria previously dis-
cussed can be used to estimate manipulation error.
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Optimum joint sequencing is defined as that which minimizes the ratio of the
stiffness diagonal over its final value during decomposition; for the diagonal with the
largest ratio, This definition seeks to avoid critical arithmetic. It is consistent
with the predictions and experimental results reported here for rods and beams.

Based on this definition, optimum joint sequencing for regular cantilevered
series rod and beam systems can be proved to involve numbering from the free edge
toward the support.

I all the edges of the structure are restrained, the joint numbering sequence has
less affect on critical arithmetic than for a structure with a free edge. This is illus-
trated for the series rod by the data in TablefX, In addition, these data show that
numbering from the midstation toward both supports or numbering from one end to the
other results in the same diagonals for the decomposition matrix for a regular rod.

The data in Table IX also show that for the regular rod with both ends clamped,
optimum joint numbering involves sequential numbering of adjacent joints. Since this
is also the case for optimum numbering with a free edge, and since this type of number-
ing tends to minimize matrix wavefront, it is hypothesized that optimum joint numbering
from the point of view of manipulation error is that which minimizes the stiffness matrix
wavefront and proceeds from free edges, when they exist,

The effect of varying sciffness is to increase the importance of proper joint number-
ing as demonstrated by the increasing rod and beam systems, With improper numbering,
numerical singularity can occur with only two elements if the elements differ in stiffness
drastically.

The guideline of numbering from the free edge also is valid for other systems.
This conclusion is based on comparing analysis errors using the data in the fourth,
fifth and sixth columns of Table VIII. In column five, joints are sequenced from the free
edge; in column six, from the fixity. The comparison shows that generally numbering
from the free edge gives smaller error. The cylinder exception is discounted because of
inherent error in input. The Argyris membrane exception can be attributed to the
capriciousness of manipulation error. The maximum relative error for this membrane,
in accordance with equation (38), is 12, 3%.

The analyst should space his joints so that as the joint numbers increase, the
element stiffnesses increase. Table X shows the results of rod analyses for irregular
structures., The relative errors are indicated to be smaller when stiffness increases as
joint numbers increase. The problems considered are rods with elements whose stiff-
ness doubles or is multiplied by one-half for each sequential element going from tip to
root. The structures are loaded with a force of (228-1) at the tip and errors measured
for tip displacements. The reduction in error due to preceding in the direction of in~
creasing stiffness is less important than the proper joint numbering for these small
problems, However, as the order of the equations becomes large, propagation instability
is more probable in the system where element stiffnesses are decreasing and proper
joint spacing becomes more important in avoiding stiffness decreases,
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Table IX

Effect of Joint Sequencing for Regular Rods

£

STRUCTURE 4
4

Joint No. 1 2 3 4 5 6 7 8
2%
log 2 3/2 4/3 5/4 6/5 776 8/7 1/8
*k
k. /1.2
i1 i1 1 1.33 1.50 1.60 1.67 1.71 1.75 16.0
Joint No. 8 7 6 5 4 3 2 1
1, %
ii 1 1 1 1 1 1 1 1
2k
k /1, 2.00 2.00 2.00 2.00 2.00 2..00 2.00 2.00
STRUCTURE 4 . - 45
Joint No. 1 2 3 4 5 6 7
2%
1ii 2 3/2 4/3 5/4 6/5 7.6 8/7
k. ./1,. 2 1 6 6 1
i/l .00 1.33 1.50 1.60 1.67 1.7 1.75
Joint No. 6 4 2’ 1 3 5 7
*
1112 7/6 5/4 3/2 2 4/3 6/5 8/7
k. /1. 2" 1
53/ /71 1.60 1.33 1 1.50 1.67 1.75
Joint No. 1 5 2 7 3 6 4
2%
1., 2 1 2 1/2 2 1 2
11
K, /1. 2 1 2.00 1 4.00 1 2.00 1
11 11

#*Square of the Decomposition Diagonal

*%Stiffness Diagonal/Decomposition Diagonal Squared
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Table X

Error Magnification for Variable Stiffness

Series Rods

No.

Segments

of

15
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100

Increasing Systems Tip Deflection

Decreasing Systems Tip Deflection

Exact Calculated % Error Exact Calculated % Error
eRPne®ay P 228, 0 Py Pl 22801 5.90x107°
1%y (2201 2%, 0 20 1%y 22001y 228.11.2%0 3.72¢1070
e M) 2285% araxi0® M0 e%81y  28817.2%0 5.96x107°
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The selection of the mathematical representations for a continuum elements
also has an important effect on manipulation error, Table XI compares analyses of
a membrane using Turner and Argyris representations for the series problem. The
Turner representation results in less relative manipulation error for all ratios of
the panel sides.

The manipulation errors tend to reduce in membrane and plate systems as the
panels become elongated in the direction of the series, This is evident from the data in
the last two rows of Table XI, This suggests that errors in mixed systems may be
larger than those in pure series systems. Moreover, it implies that one of the most
effective ways the analyst can use to reduce manipulation errors is to introduce displace-
ment constraints, In the case of the uniformly loaded series membrane using the
Turner, Argyris or Hrennikoff model, this reduces manipulation errors to those of the
rod system,

Manipulation errors can be reduced by idealizing the structure with lower order
difference representations according to Gatewood and Ohaniand. For the beam, they
demonstrated by numerical experimentation that manipulation error was reduced when
the single fourth order difference representation was replaced by a pair of second order
equations, Further error reduction occurred when the pair of second order equations
were replaced by four first order equations. This study confirmed this trend theoretically.
The absolute error for the rod equations (a first order set) at worst is proportional to
the equation number, The relative error is proportional to the total number of equations,
Thus, the analyst should choose idealizations involving many low order difference
equations to minimize his maximum error,

Having formulated this problem, the analyst must determine what precision is
required in computer calculations to insure the desired accuracy. Based on the needed
precision, the analyst can select an adequate computer configuration: hardware and
software,

Formulas developed for series rod and beam systems can be used as guidelines
for evaluating required precision, Table XII summarizes these formulas for relative
error for extreme cases for the regular structures. These relative errors can be
assumed to be additive,

Multiple source propagation error is based on an error of 27Pin every diagonal
of the decomposition, In evaluating the expected error it is assumed that this occurs
only only half the diagonals, The accumulation of persistent small errors in the decom-
position is based on errors in every row of the decomposition of magnitude 2P, The
expected error formula assumes that these errors assume an average value of one-balf
the maximum, Substitution error is based on the critical component for the load.
The expected value is taken as the average error of the critical component load and an
ideal load.,

Assume that critical arithmetic is avoided. Then, for the rod systems of more
than 265 elements, the propagation of unstable errors in decomposition is the most
important error source. When many elements are involved, the required precision
to insure less than five percent error can be estimated by
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Table XI

Effect of Panel Side Ratios

Formulation Calculated Tip Deflection?
Idealization P 8/1 Panel 1/1 Panel 1/8 Panel
Turnerb Exact .725002 . 143051 .113281

27 .724982 . 143045 .113281
e .01527% .00427, 0
Argyrisb Exact .177816 .889079 .277837
27 .177763 .888131 .277842
e .0299% .106% .0018%
Bogner® Exact .952381 .761905 .186012
36 .820100 .761928 .190452
27 .765259 .756491 .190713
e 19.5% .710% 2.15%

®Due to uniform load at tip. Structure fixed at high numbered joints,
Gauss solution.

bMembrane, 100 series elements, 401 equations.

cPlate, 20 series elements,120 equations.
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Table XII

Regular Series Systems Errors

Error Source

Multiple Source Propagation

Persistent Accumulation

Substitution

Critical Arithmetic

Rod Systems Beam Systems
Error Bound Expected Error Bound Expected
- - . 2,-p
g2o7P 7£%27P 16£%27P 4E72
£2°P © Leoop g4o7P Leby-p
2 2
265 £2P 133 £27P 360 £2° 180£2°P

£2°P £2°P £ BB gpmlecd)




p > ln2 (20 fz) Bound
p > 1n2 (5 fz) Expected (3-39)

The equations show that single precision arithmetic for all the computers of Table I
is adequate for treating large rod systems,

For beam systems with many elements, persistent small manipulation errors
in the decomposition process is the most important error source. The required pre-
cision to insure less than five percent error is given by

p > ln2 (20 f4) Bound
p > 1n, (10 £ Expected (3-40)

Application of equations (39) or (40) to practical structural problems requires
judgment, FEach equation is based on a worst case series system (with no critical
arithmetic), whereas the practical structure involves mixed series and parallel sub-
systems, The equations are also written in terms of the number of finite elements
whereas the manipulation error must depend on the number of non-zero coefficients
in the stiffness matrix, Assuming that series systems are critical, and rewriting
equation (40) in terms of the number of equations for the beam given

p-> 1, (0.625 £ Expected (3-41)

this equation can be used to estimate the required precision in a practical structural
analysis,

It is observed that all errors in Table XII are proportional to 27P except those
due to critical arithmetic. This suggests that analyses with different levels of precision
can be performed to estimate manipulation errors,

Figure 15 shows measurements demoustrating the validity of this approach for a
regular series rod and several regular series beams, The scale for precision has been
chosen so that if all errors are proportional to 2-P, the errors for a particular structure
will plot as a straight line passing through the intersection of the given axes,

This figure shows that the manipulation error varies with 27P over most of the
tested range. Failure of some of the lines to pass through the intersection of the axes
suggests some nonlinearity when errors are very small, due to use of a discrete
number system.,

These results indicate that analyses with several levels of precision can be used
to estimate manipulation errors. If three levels are used, the assumption that error
is proportional to 27P can be checked. If only two levels are used, the proportionality

must be assumed to predict error magnitudes.
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Guidelines for the Programmer, - Though the analyst fixes the sequence in
which the equations of a joint are introduced info the elimination process, the
details of the solution algorithm are selected by the computer programmer, It is
these details which he can modify to improve the accuracy of the structural apalysis,
In addition, there are a number of checks that the computer programmer can include
in his code to indicate the accuracy of the numerical results.

One of the most significant algorithm changes is to increase the precision of the
arithmetic involved. One device for making this improvement is simply to make avail-
able multiple precision arithmetic, This study has shown that single precision arithmetic
on a 27 bit mantissa machine is satisfactory for problems up to about 3000th order if
the analyst is careful in program formulation. The use of multiple precision arithmetic
results in a computer code that can handle smaller problem sizes or problems of the
same size at much more machine time because of the added core space required to
retain multiple precision numbers.

An examination of the decomposition process shows that all the elements of the
decomposition matrix are less than one. Since this is true, the bits reserved for the
exponent can be implied and fixed decimal arithmetic used throughout with the decimal
point positioned at the left of the number representation, This will effectively permit
an increase of at least 20 percent in the mantissa for the machines listed in Table 1.
This algorithm change requires no additional storage space over the standard algorithm.,

Since the largest single source of error arises in forming square roots, it might
be thought that use of double precision to develop square roots would result in improved
accuracy. Figure 16 shows that this is not the case, The double precision square
roots result in twice as much error as expected for the increasing series rod systems.
The explanation is that truncating the double precision root to single precision insures
that the errors, when they are non-zero, are negative. Since the process is unstable
for negative errors, the small errors are magnified resulting in larger errors in the
result than for the single precision case where only positive errors can occur,

The squre root error can be entirely avoided if a modified Gauss triangularization
process is selected instead of the Choleski process. Let the decomposition be written
as

K=LDLY (3-42)

a lower triangular matrix with ones on the diagonal
a diagonal matrix

where L
D

The elements of D can be stored along the diagonal of L and the ones implied so
that no additional space is required over Choleski decomposition, No square rooting
is required. The accuracy of this modification for series rods is indicated in Figure 16.
The predicted accuracy assuming no manipulation error correlates well with that
measured with this modified Gauss decomposition, Table XIII provides a comparison of
the error in a series beam analysis for Choleski and Gauss for a regular series beam
with 100 segments with unit lateral loads and for the increasing series beam. The error
in the Choleski is not always worse than the Gauss error, However, as the matrix
approaches numerical singularity, the advantage of Gauss becomes increasingly evident.
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Table XIII

Comparison Between Choleski and Gauss Error

Regular Beam 1 ) ! ! o ) E
2123 ... 100 100 99 98 ... 1
Loading Displ. Exact Gauss Choleski Gauss Choleski
Joint Joint Displ. Displ. Displ. Displ. Displ.
1 1 .666667 .665973 .665382 .666667 .666764
100 99.6667 96.1824 89.6148 99.6667 100.051
100 1 99.6667 96.1826 89.6147 99.6667 100.051
100 666,667 645,046 595,514 666,665 669,453
Increasing Beam 4 . ‘
42123 ... ,,
w w W, .
£ £, Exact £, Gauss f, Choleski E Chol./E Gauss
12 449,329102 425.54143 461.42364 .524
14 633.332107 470.11828 718.19141 .520
15 737.332720 324.53154 1344.5670 1.475
16 849.333026 220.24451 Not positive = = -----

definite
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Though the analyst specifies the equation sequence by his joint numbering, the
sequence in which the degrees of freedom are treated at a joint affects the accuracy
of solution. The importance of treating force equilibrium first for the beam can be
seen in Figure 17. This figure shows the relative errors at several stations on the 100
segment beam as a function of precision for each equation sequence, This figure shows
that though errors may sometimes be greater when forces are treated first, the errors
behave better,

The intrinsic advantage of treating force equilibrium equations before moment
equations is evident by looking at the forward or back substitution equations, When
force equilibrium is stated first, the first of the equation pair can be solved independently
of the second, This equation is a first order equation of the form,

8. -8 , =M (3-43)

Since all the My are less than the exact moments because of truncation, the 8., are all
underestimated (for this argument all loads are considered reinforcing).

When moment equilibrium is stated first, each pair of equations is coupled.
Eliminating displacements in the pair of back substitution equations gives a second order
difference equation of the form,

O =20, 1 ¥8, p =M - M, (3-44)

Thus, solution of these equations is sensitive to the rate of error growth as well as
magnitude and hence more sensitive to the moment errors. Since the error rate is
negative, rotations (and displacements) may be overestimated or underestimated even
though loads are reinforcing, as indicated in Figure 17,

Apother way in which the errors in the elimination process can be reduced is by
making a change of variables in the equilibrium equations, If the displacement variables
are replaced by change of displacement, critical arithmetic will be largely removed
in the decomposition process. This can be accomplished explicitly by a change of
variables, It is accomplished implicitly by optimum equation sequencing,

Another possibility for minimizing manipulation error is for the computer code
to provide the capability to resort the equations so that they are handled in an optimum
sequence, This solution is not an acceptable solution. For series systems for example,
there are only two reasonable sorting sequences to preserve optimum bandedness, If
joints are numbered toward the fixity, equations are treated in an optimum sequence,
This suggests that minimum bandwidths imply an optimum sort, both from the point
of view of efficient data handling and minimum manipulation error, Since resorting of
large matrices is inefficient on the computer and a near optimum sequencing can easily
be specified by the analyst cognizant of the topology of his structure, automatic equation
resequencing is unattractive,

Several attempts have been made to minimize the affects of critical arithmetic
in the determination of stresses in the displacement method, These have involved
some technique for smoothing the stress estimates so that big jumps in stresses do not
occur between elements. This smoothing is achieved by taking cognizance of the
stresses in neighboring elements to condition the estimates of stress in a given element,
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Turner, Martin, and Weikel.23 have shown by numerical experimentation that
better estimates of the stresses are obtained for membranes by averaging the siresses
for the elements meeting at a joint. Utku“* has found that a least squares fit to the
stress values is helpful in improving the estimates.

There are four checks that should be included in a displacement method computer
code to validate solutions. The first consists of a singularity test. The studies described
demonstrate that the relative value of the diagonal after the decomposition process
compared with its value before is the best single measure of the accuracy of the decom-
position process., In addition, the last diagonal of the matrix provides the best measure
of the accuracy of the determinant of the matrix.- Therefore, a simple comparison
between the diagonal before and after the decomposition process can lead to measures
of the analysis accuracy.

A second computer based test can be developed considering the error propagation
characteristics described earlier in this section, A measure of the propagation
stability can not only determine the accuracy of predicted structural response but also
can anticipate the singularity or non-positive definiteness of the stiffness array,

A third, and already popular test involves equilibrium checks, These checks
measure the error in the solution of the simultaneous equations by resubstituting the
solution in the original equations (2-25).

A fourth check is the evaluation of stress calculations with respect to manipulation
error, This check is easily incorporated and will define, for the analyst, the relative
accuracy of the calculated stresses.

One check which has been used in the past is based upon Maxwell reciprocity.
This check consists of comparison of the off diagonals of the flexibility matrix to deter-
mine analysis accuracy. Test problems in this study have convincingly demonstrated
that this test is not a sufficient test of accuracy. For example, a regular 400 segment
cantilevered beam fixed in the last equations gives no significant figures accuracy for
deflection under a tip normal load or a load adjacent to the fixity, Maxwell reciprocity,
however, is satisfied for seven significant digits,

A number of investigators have suggested the use of eigenvalue ratios as a
measure of the manipulation error of the matrix, Test problems have shown that these
criteria are not directly related to the principal manipulation error inducing phenomena
in the elimination process: critical arithmetic, This is proven by the fact that when
the equation of series rod systems are sequenced from tip to root the solution has
negligible error compared to their sequencing from root to tip, Though resequencing
does not change the matrix eigenvalue ratios, errors vary dramatically, Moreover,
as the number of segments of the rod increase, the eigenvalue ratio (the conditioning
number) will increase monotonically, Nevertheless, the accuracy for solving problems
of order of 50 for the rod systems is comparable to the accuracy for solving those of the
order of 1200 when the structure is numbered from the free edge to the root.
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Section 4
FORCE METHOD ERROR ANALYSIS

This section considers the structural analysis manipulation errors in
generating the coefficients in the structural equations and in elimina-
ting coupling to evaluate the primary and secondary unknowns. In the force
method the primary unknowns are the element forces, X and Q. The secondary
unknowns are the structural deflections, A in equations (2-23) and (2-24).
This section provides guidelines for the engineering analyst and programmer
for reducing, estimating, and measuring manipulation error.

Although the sets of variables in the displacement and force methods
of structural analysis are dual to each other, there are significant dif-
ferences in computational detail in the solution process. ‘The principal
differences arise in the transformations of variables and in solving the
resulting set of linear simultaneous equations. On this basis, the error
analysis of the displacement method cannot be completely carried over for
the force method.

Generation Lrror

Generation errors in the force method include the manipulation errors
incurred in the development of the following coefficient matrices:

(1) The loading coefficient matrix F

(2) The geometric assembly matrix P. This matrix includes the
partitions PQ and Py of equation (2-24).

(3) The flexibility matrices d. for each element in local coordinates.
When arranged in block diagonal form along the main diagonal, these matrices
form matrices D, and Dx of equation (2-23).

Q

(4) The element deformations in local coordinates.

The coefficients of matrix F are direction cosines of load vectors.
1f they are direct—-input, input conversion and truncation error is involved.
Often, however, the coefficients depend upon the coordinates of two points
defined by the analyst to describe the direction of a load vector. Then the
calculations in generating the elements of the F matrix can involve critical
arithmetic.

Similarly, the calculations for the elements of the P matrix involve
calculation of lengths and ratios of lengths. Lengths are obtained by dif-
ferencing coordinates of points. Critical arithmetic will be involved if
the coordinates are defined such that their difference is not an accurate
measure of element length. Furthermore, since the cosines represent ratios
of two lengths, to avoid critical arithmetic, as noted in Section 3, the
difference of the relative error in the calculation of the lengths must be
small compared to one.
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The generalized coordinates used in the development of the element
flexibilities are based only on elastic deformations and do not include
rigid body motion. The errors in the matrix of elastic constants used for
calculating element flexibilities are due primarily to input errors. This
statement also applies to the generation errors involved in the development
of the matrix of element deformations, e

The maximum number of calculations to generate an element of the P
matrix is in the order of 130 calculations. This many calculations cor-
respond to that required to calculate the kick forces or out-of-plane forces
for a warped shear panel in terms of the element generalized force that is
entered into the P matrix. The detailed expressions for the calculations
are given in reference 26.

On comparing the various flexibility matrices of finite elements, e.g.
those derived in reference 27, the maximum number of calculations to gen-—
erate an element of the matrices D. and D, correspond to that of a tetrahedron
finite element and is in the orderQof 125 calculations.

It can be seen that if critical arithmetic is avoided generation errors
are small. The number of calculations is much less than 13.4 x 109 for each
coefficient. In accordance with the analysis of Section 2, this many calcu—
lations would be required before error would exceed five percent with a 27
binary place mantissa,

Elimination Error

The general structural equations are given in Section 2, This outline
of the solution by the force method is appropriate when the redundant forces
are preselected since the ordering of the determinate and redundant forces
establishes the corresponding partitions in the coefficient matrix in equa-
tion (2-23) and equation (2-24). However when the redundant forces are
automatically selected by the computer, the solution process is modified.

In the force method, the structural equations are regarded as two sets
of simultaneous equations. The first set of equations are the equilibrium
equations (2-24). This set of equations requires partitioning the sparsely
populated and unsymmetric geometry assembly matrix P into P and Py by auto-
matic selection of the redundants. The P,, matrix involves forces in a sta-
tically determinate substructure. The standard way of reducing the structure
to a determinate structure by suitable releases or ‘'cuts' is equivalent to
obtaining a "particular solution" to the equilibrium equations. This solution
satisfies the conditions of equilibrium but not the boundary conditions of the
problem, i.e., the continuity of contiguous elements. Thus, the solution of
the -equilibrium equations contains arbitrary parameters which are determined
from continuity considerations.

The partitioning process is accomplished by the Jordan diagonalization
method. This is similar to the familiar Gauss elimination method. The only
difference is that in the former the coefficient matrix is reduced to a diag-
onal (or to a unit matrix) whereas in the latter it is reduced to a triangular
array. In either case the process is equivalent to performing elementary row
operations or premultiplying by a sequence of matrices.
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The partitioning approach is to find and diagonalize a set of linearly
independent columns of the dimension of the row space of P (the number of
equilibrium equations). If a null linearly dependent column or a zero, pivot
(diagonal) element is encountered in the elimination process, column inter-
changes are performed. If insufficient, non-null columns are found, at least
one of the equilibrium equations is dependent. If enough columns are found
and the Py partition is not null, the columns of P( comprise the selected
stable determinate substructure and the columns of Py comprise the selected
redundants. The dimension of the column space of Py is the degree of inde-~
terminacy of the structure. If Py is null, the structure is statically de-
terminate. In this case the equilibrium equations (2-24) are the only rel-
evant set of equations; the continuity equations (2-23) are irrelevant.

The redundant forces are evaluated from the second -set of equations.
These equations are compatibility conditions. They result in equations
(2-28) which involve the coefficient array

T -1T -1

PX PQ D P_+D, =36

o Fx TP T Sxx (4-1)
The matrix, GXX, is positive definite and symmetric since it is obtained by

a congruent transformation of the positive definite matrices, Dy and Dy. If

the set of redundants are not orthogonal, the matrix §yy is densely populated.

If the redundants form an orthogonal set, the matrix, dyy is a diagonal matrix.

In solving (2-28) for the redundant forces, X, Jordan diagonalization is
also used. Since the matrix 6yyx is positive definite, pivoting is not required.
It is sometimes incorporated with the intent of minimizing manipulation error.

The next step of the elimination process involves the use of equation
(2-29) to evaluate the internal forces, Q. Significant attrition errors can
result from this calculation if the determinate base structure and correspon-
ding redundant stress system are not properly chosen. This occurs when the
effect on the determinate base structure of the redundants is comparable in
magnitude to that of the external loads. The calculations involve subtraction
of numbers of approximately the same magnitude.

Finally the calculations described by equation (2-30) define displacements.
No critical arithmetic is involved in the calculation. The product of the
first pair of matrices on the right-hand side of equation (2-30) is preserved
from the elimination and multiplied by the internal forces to assess the dis-
placements.

Thus, error analysis for elimination error in the force method will be
concerned with errors in partitioning the geometric assembly matrix, P, and
solving for redundant forces by triangularizing the matrix GXX' Errors for
these arrays will be examined separately.

Error Analysis for the Geometric Assembly Matrix

¥rrors in eliminating the redundant interaction to evaluate the unknowns
include inherent and attrition error. Inherent error is the error existing
in the coefficients of the matrices due to prior arithmetic. 1In the case of
the P matrix (the geometric assembly matrix) the prior arithmetic are generation
calculations. As described above, few calculations are involved in developing
these coefficients and critical arithmetic can be avoided. The relative in-
herent error will be less than 27P,
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An important source of error in selecting redundants is the numerical
singularity of the geometric assembly matrix. The matrix P, is a square array
of coefficients of the unknown "determinate” forces in the e€quations of equi-
librium (2-24). Singularity of this matrix can arise from a linear dependency
or inconsistency of the equations of equilibrium, i.e., of the rows of the P
matrix. A particular case is when at least one of the element coordinate
forces is not a generalized force. In the force merhod the forces in a dis-
assembled element fall into two groups: element reactions and element forces.
Only element forces may occupy a column in the P matrix, If element reactions
were inadvertantly included in the P matrix a dependency would exist. A phys-
ical interpretation of the singularity of the geometric assembly matrix is
that the structure is unstable., This implies the formation of a mechanism.

Assuming that the idealized structure is physically stable, a condition
of local instability can result from the following cases:

(1) Generation errors involving critical arithmetic resulting from the
calculation of lengths and orientation of elements., Tor example, two axially
loaded pin-connected rods which are supposedly collinear are unstable if the
ends are offset.

(2) Structures which are nearly unstable. An example of these is a
truss with a panel whose length to depth ratio is such that the diagonal be-—
comes ineffective or lost in the numerical calculations resulting in the
formation of a mechanism,

Instability can also occur when the redundant forces are not properly
selected, i.e., the statically determinate structure remaining after removal
of redundants is unstable. In this case the coefficient matrix for the sta-
tically determinate forces PQ is singular. )

The singularity erxrror for the coefficient matrix of the determinate
structure is not critical for a parallel system. The matrix is a scalar for
rod systems and at most & well-conditioned 2 x 2 matrix for beam systems.

In a series system, there are no redundants, i.e., P, is identical to P. Then,
the relative flexibilities of the structural elements do not contribute to the
singularity error in the coefficient matrix. This matrix expresses the com—
bined effects of the geometrical position of the member with respect to the
coordinate system and of the incidence of the members at the joints. It thus
represents a linear transformation of the base vectors of the element-forces
space into the basis of the vector space of the joint—applied loads. The
ordering of the elements or joints affects the disposition of elements of the
transformation matrix but not their values.

For a series system the coefficient matrix is also well behaved. This is
confirmed by the solution for the structure shown in Figure 18 in which the
angle between contiguous elements is made small. Each bar carries axial and
bending restraints at each end. The significant results are the pivot values
of the Jordan diagonalization of the P matrix. These maintained a value of
1.0 throughout.
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Consideration of a mixed system involving parallel and series elements
may perhaps yield a more meaningful criterion for the numerical singularity
of the P matrix. To discover this criterion, a typical rectangular panel
made up of four edge bars and one diagonal bar is analyzed with the ratio
a/b reduced by a factor of 2 in successive solutions, where a is the width
and b is the length of the panel. 8See Figure 19.
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Figure 19 - Rectangular Panel

In the program used for the solutions the format for the input of coor-
dinate values is prescribed in fixed point manner with six places provided
for the fractional part of the value. One can see that the length ‘a' would
be gero (and the structure a mechanism) when values of coordinates fall below
107°. 1In the case at hand since the whole gart had two additional significant
figures, cos B becomes unity when a/b = 1078, 1If the input data are expressed
in floating point manner the ratio of a/b for creation of a mechanism is smaller.

Therefore, it is seen that the numerical singularity of the geometric as-—
sembly matrix will not arise until the coordinates define degenerate structural
geometry. The error in computations evaluating length, angles, areas, and vol-
umes will be of the order of 2”P, Only when the actual quantities are of this
order, will the error destroy solution validity.

Error Analysis for the Redundants Matrix

The errors incurred in partitioning the geometric assembly matrix are
inherent errors for the redundents matrix, 6... These errors msy be signi-
ficant when many force unknowns are treated g%nce they can induce unstable
error propagation. The redundants matrix, like the stiffness matrix, must
be positive definite if it represents a realizable structure. Error propa-
gation will have characteristics like those described in Section 3 for the
displacement method. However, since the §_. matrix is full, the differential
equation approach deseribed in Section 3 to evaluate the implications of the
error propagation cannot be used.

Like the stiffness matrix, the redundants matrix could exhibit numerical
singulerity. The worst case system for singularity of the redundants metrix
is for the parallel system. The parallel structure consists of "N" collinear
members joined to common points at their ends. Numericsl singularity for
parallel rods and beam systems with equal and unequal flexibilities will be
examined.
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Figure 20 - Envelope of Relative Error and Number of Calculations
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Parallel Rod Systems.— For the parallel system of N rods the structure
is statically indeterminate to the N-1 degree. Assume member 1 is the de-
terminate substructure. The redundants metrix equation (k4-1) is themn givenm
by

D + D
Q X1 sy
DQ D+ sz
%x ~ D D D.+D
Q Q Q X3
— e e (%-3)
D D D -~-~D <+ D
| Q Q Q XN
where
DQ = K%-flexibility of determinate structure
L R th
DXi A flexibility of i~ redundant
Assuming equal flexibilities of bars we can write
D =D, =2 d=1, 2, ... N-1 (4~4)
Q X3 AE 5 o9
Assuming decreasing flexibilities of bars and taking the most flexible
bar as the determinate structure we can write
% ° 2E
' (4-5)
1
Dxi 21_1 DQ i#, 29 coo N-l
Considering increasing flexibilities of bars and taking the most rigid
bar as the determinate structure we can write
L
Dy ® 3
4-6)
i-1
Dxi 2 DQ l#’ 2, coo }I_l

Consider now the triangularization of dxy. The general kth diagonal
elemeut after k-1 Gauss—-Jordan reduction represents the deflection at the
cut in the direction of redundant k with all elements j, j=1 to k-1 closed
and all elements m, m=k to N open.
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Using the above physical interpretation, the following expression for
the general kth diagonal element after k-1 reductions can be derived

k
nDb
i=1 i
6. =D + k k-1
kk i+l
S T,
i=1 i=1
where
Di = flexlbility matrix of ith rod element
k
I D, = continuous product of the flexibility matrices of the
i=1 * k redundant elements
k k-1
S 1o = gum of the k continuous products of the flexibility
i=1 i=1 matrices of the k redundant elements taken k-1 at a

time

Using equation (7) for N rods in parallel with equal flexibilities D,
we obtain

DN

N(DN—l)

= 1

=D + N)

The number of elements N at wEich numerical singularity occurs is when the
second term in equation 7 or - in equation 8 is smaller than the numerical
value of the last recorded big in the computer number representation. As-
suming floating point arithmetic and letting p = 27,

1. ,p1
$=2

28

or N= 2 268 x 106 elements

Parallel Beam System.- Consider the same parallel system except the elements

(4-7)

(4-8)

(4-9)

connecting the two end points are now beams instead of rods. The flexibility
matrix to represent the elastic behavior of each beam may be characterized by

two generalized forces. Each force may refer to a single independent force

at a coordinate degree of freedom.
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For the parallel system of beams there are two independent equations of
equilibrium and 2N unknown~element forces. Thus, the structure is indeter-
minate to 2(N-1) degrees. Assuming beam 1 is the determinate structure, the
redundants matrix, equation (4-1) is also given by equation (4-3). However,

2 = 2 x 2 flexibility matrix of determinate structure and Dyy = 2 x 2 matrix
of ith redundant.

A linear transformation always exists from one set of generalized coordi-
nates to another. The set of generalized coordinates shown in Figure 21 is
used for the beam for this array.

Congidering equal flexibilitdies of beams'the elements of 6yy in equation
(3) can be written as
31 11

D, = D,, =3 (4-9)
Q Xi 3EI L 1/2 1
Considering decreasing flexibilities such that the determinate struc-
ture is most flexible, the elements of GXX in equation (3) are
3
L
D, = T== 1 1/2
@ 3 [U2 1]
D bl § i/2
Xi 3EI zi ) [1/2 l:l (4-10)
i=2,3... N1
Considering increasing flexibilities such that the aetermipate struc-
ture is most rigid, the elements of SXX in equation (3) are
3
L
DQ Al L /2
1/2 1
3 i1 (4-11)
DX:L = 35T 2 1 1/2 -
1/2 1

i=2,3... RN1

The prediction of numerical singularity for parallel beam systems fol-
lows the logic for rods and leads again to equation (7). The order of the
matrix at which it is singular is the same for beams and rods. For beams,
however, the element flexibility matrix D is a 2 x 2 matrix whereas for-rods,
D was a scalar. Thus, the number of parallel beam elements at which &gy is
singular is only one half the corresponding number of parallel rod elements,
i.e., 134 x 10°,
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Vectors With Stroke are Element Reactions

Fl, F2 = Generalized Coord.

Figure 21- Generslized Coordinates For Beams
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Singe it is impractical to verify the singularity of the SXX matrix for
134 x 10~ elements, a test problem of 32 parallel beams of equal flexibilities
was used to verify the criteria. By inspection of the pivot values in the
Jordan-diagonalization of 8yy tabulated in Table XIV.

1
GxxIx = D(L + 37 (4-12)

which confirms the previous relationship, equation (8).

For the case of unequal flexibilities, the previous relationship may
also be applied. However, it is quite apparent from the input data what
order the rows of the matrix are almost identical. The SXX matrix is a
full matrix comnsisting of groups of 2 x 2 corresponding to the element
flexibility matrix of the determinate beam. In addition, each 2 x 2 block
along the main diagonal are incremented by the 2 x 2 element flexibility
matrices of the redundants. For the case where the determinate beam is the
most flexible, it is easy to see that when the difference between the
elements of the flexibility matrix of the determinate beam and elements of
the flexibility matrix of the NtP redundant beam is approximately Z‘ZZ the
rows of the SXX matrix are practically identical which renders it singular.
The matrix order when this occurs is 54. This is confirmed by an actual
computer run., (Table XV), Since in the case of unequal flexibilities in
which the determinate structure is the most rigid the numerical singularity
will incur more elements than for the case of equal flexibilities, no
computer runs were made for the case of increasing flexibilities.

Assuming a precision p = 27 bits, the main conclusions from the singu-
larity error analysis of the matrix, dxx, for a parallel system of rods and
beams are:

(1) Considering beam elements of decreasing flexibilities and assuming
the determinate structure to be the most flexible element, very few elements
(54) are required to cause singularity, i.e., meaningless answers due to
critical arithmetic.

(2) Considering beam elements of equal flexibilities, a substantial
number of elements (134 x 106) are required before numerical singularity
occurs,

(3) Considering beam elements of increasing flexibilities and assuming
the determinate structure is the least flexible (most rigid), the number of
elements to cause singularity are even much greater than in (2) above.

(4) The number of rod elements to cause singularity is twice the number
of beam elements for each of the three corresponding cases since the order of
the matrix at which it is singular is the same for beams and rods., For beans,
however, the element flexibility matrix D is a 2 x 2 matrix whereas for rods,
D was a scalar.
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COL

i

13
T
21
25
29

PIVOT

»10000+01

.6666T-00
.80000-00
.57143-00
.55556-00
.54545-00
.53846-00
+53333-00

Table XIV

COL
2

6
10
1k
18
22
26
30

For Parsallel Beams, Equal Flexibilitiles

PIVOTS IN ORDER OF SELECTION

PIVOT
.75000-00

.50000-00
.45000-00
.42857-00
.41667-00
.40909-00
.40385-00

.40000-00

COL
3

7

11
15
19
23
a7
31

PIVOT
. 75000-00

.62500-00
.58333-00
.56250~00
.55000-00
.54167-00
.53571-00
.53125-00

Pivot Values In Triangulerization of Gxx

COL

12
16
20
2k
28
32

PIVOT
.56250~00

.46875-00
.43750-00
.42188-00
.41250-00
.40625-00
.40179-00

.39844-00



L6

COL
1

5

9
13
17
21
25
29
33
37
b1
ks
49

PIVOT
.10000+01

.23810-00
.61584-01
.15565-01
.39025-02
.97633-03
.2hl12-03
.61034-0k
152570k
.38127-05
.95168-06
.24012-06

.61476-07

Table XV

PIVOTS IN ORDER OF SELECTION

CoL
2

6
10
1k
18
22
26
30
34
38
b2
k6

50

MATRIX DELXX IS SINGULAR

Pivot Values In Triangulerizstion Of Gxx

For Parallel Beams, Diminishing Flexibilities

PIVOT
.75000-00

.17857-00
.16188-01
.116Th-01
.29268-02
.73225-03
.18310-03
L57T76-0k
.11443-0h
.28521-05
.70585-06
.17958-06
Ah6071-07

COL
3

T
11
15
19
23
a7
31
35
39
43
b7
51

PIVOT
4666T7-00

.12157+00
.31013-01
LTT9T4-02
.19522-02
.18823-03
.12206-03
.30510-0}
.76215~05
.18994-05
.148379-06
.12708-06

.37707-07

COoL

16
20
2h
28
32
36

L)
48

52

PIVOT
»35000~00

.91176-01
.23260-01
.58480-02
1464102
.36617-03
.91548-0k
.22883-0k
.57161-05
.14227-05
.36085-07
.95185-07
.20821-07



In summary, the ideal situation is to select the most rigid element as
the determinate structure. To apply this criteria derived for a worst case
parallel system to a practical structure, the criteria may be stated as
follows: The optimum determinate base structure is a stable substructure
which is as rigid (large structural stiffness) as possible. This also cor-
responds to an optimum selection of redundants. With the use of accurate
and stable solution algorithms, these optimum conditions would minimize
manipulation errors.

The proper choice of the base structure and corresponding redundant
stress system is the most important strategy in the force method. The im-
proper selection of the determinate structure can result in meaningless an-
swers due to the following conditions:

(1) Singularity of the P matrix caused by an implied kinematic in-
stability of the determinate structure.

(2) Singularity of the 6XX matrix when the determinate structure is
very flexible.

(3) Significant attrition errors in the calculation of internal element
forces Q in equation (2-29) when the effect of the loads and the redundants
on the base structure are comparable in magnitude.

Guidelines for the Analyst

The guidelines that may be provided for the analyst pertain to the basic
input data which affects generation errors. These are related to the proper
idealization of the structure, proper choice of reference systems, and ac-
curate description of the geometry of the structure. As previously noted in
section 3, these aspects are within the control of the analyst in properly
formulating the problem in order to avoid critical arithmetic that causes
numerical singularity and subsequent invalidation of answers.

The analyst should locate the global coordinate system near the center
of his structure to minimize the span between coordinate points which de-
fine the boundaries of elements. If necessary the scale of the structure
should be selected such that the element farthest removed from the origin
are satisfactorily represented by the difference of its coordinates.

In the idealization of the structure the numbering of the elements de-
fines the ordering of the element forces which correspond to the columns of
the P matrix as well as the ordering of the flexibilities of elements in the
D matrix. The numbering of elements defines the sequence in which flexibili-
ties are added. To minimize the errors and avoid critical arithmetic, the
joints should be located such that adjacently ordered elements should have
commensurate flexibilities. If incommensurate flexibilities are to be added,
the analysts can optimize the arithmetic by numbering his elements, adding
the smaller flexibilities first.
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In the idealization of the structure it is also desirable for the anal-
yst to have an idea of the possible load paths for the external loads to the
points of supports. With this idea in mind the joints can be located and
the elements can be numbered such that those elements which comprise the more
direct load paths are included in establishing the determinate base structure.
The significance of this criterion cannot be overemphasized. It is a com-
plementary measure for an adequate structure-cutter whose essential features
will be discussed under "Guidelines to the Programmer.' In general this base
structure 1s comprised of elements with the smallest flexibilities and in
addition account for the connectivity of all the structural elements. In this
cagse since the effect of the redundants will be minimum, the attrition errors
in the calculation of internal element forces Q in equation (2-29) will also
be minimum.

In addition, attrition errors in triangularizing the P matrix will be small,
because the number of calculations is small. For a general practical problem the
total number of calculations in the elimination process and evaluation of internal
element forces depends on two parameters, These are the number of independent
equations of equilibrium, Ny or the row dimension of P and the number of unknown
element forces Ng or the column dimension of P. Since the number of redundants,
Ny corresponds to the difference between the column and row dimensions of P an
alternative set of parameters would be the number of independent equations of
equilibrium and the number of redundant forces.

Consider first a pure series system. Since this is statically determinate
‘the number of independent equations of equilibrium equals the number of unknownr
element forces. The total number of calculations depends solely on the order of
the matrix P. For the number of calculations to be of the order of 13.4 x 106
the number of unknowns will be approximately 800¢. This number is considered to
be an upper bound for the number of unknown element forces. This is based on -the
assumption that the P matrix is five percent dense and that the maximum number of
calculations for an element force is twice the average calculation for all ele-
ments of the solution vector.

- Consider next a pure parallel system of beams. Most of the calculstions
will pertain to the inversion of the redundant metrix §... For the number of
calculations to be of the order of 13.4 x 10~ the number of redundants will be
approximately 1500. This number is considered to be an upper bound for the
number of redundants. The result is based on the assumption that the §
trix is full and that the maximum number of calculations for a redund %Xis
twice the average calculation for all the redundant forces.

For a more practical problem the determination of the total number of
calculations is more involved. In carrying through the solution process of
the general structural equations presented in Section 2, the total number of
calculations for one element force under one loeding condition has the fol-
lowing general form: (see figure 20)

2_ ) 13, 2 3
Ye "fgan | o [ * Mg Nx:l + N Ty + 3y (k-2)

where
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=
It

c total number of calculations

=
il

g — independent equations of equilibrium

=
!

= total number of redundants
Equation (4-2) is based on the following assumptions:
(1) the matrix P is five percent dense while the matrix Syy is full.

(2) The maximum number of calculations for one element force is twice
the average calculation for all the element forces.

Additional guidelines to the analyst pertain to making good choices of
redundancies where they are not automatically established by the computer.
The only general rule that can be given in the good choice of redundancies is
that their effect should be as localized as possible, i.e., their effect should
not propagate throughout the entire structure. The objectives in making a
good choice of redundants are as follows:

(a) To have a stable base structure.

(b) To have a well conditioned §xx matrix using as a criteria 8;;> 8y
for all k.

(¢) To minimize the amount of calculations in the inversion of Syy by
reducing the number of non-zero elements to minimum.

(d) To minimize the effect of the redundants on the determinate struc-
ture in order to reduce attrition errors in the calculations of internal
element forces to minimum.

This will be illustrated with simple examples.

Consider the continuous beam shown in figure 22. We discuss three alter-
native choices of redundancies.

(a) 1In Figure 22 a redundants Xj and X, are taken as the reactiomns at
the supports A and B. The 8yy matrix for this system is

Sxx = =— (4-13)

The above choice of redundants is a remarkably bad choice since 812 >>822.
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Figure 22 -~ Alternative choices of redundants for continuous beam
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(b) In Figure 22b redundants X, and X, are taken as the reactions at
the intermediate support B and C. For this system

8 7 1
L

XX ~ 18EI (4-14)

This is still a bad choice since all the 6's are of the same order of
magnitude.

(¢) 1In Figure 22c Xl and X2 are taken as the bending moments at sup-
ports B and C. Then

4 1
N — (4-15)
XX  12EI
L 1 4
The- choice (¢) is clearly the most suitable choice of redundants. The dif-
ferences in the above systems become even more pronounced when the number of

spans is increased. For example for six spans the corresponding matrices for
release system (b) and (¢) are as follows:

160 325 200 115
3
L 225 360 340 200 _
Gyy) = T5081 (4-16)
200 340 360 225
115 200 225 160
& 1 0 0O
L 1 1
G = o7 4 0 (4-17)
c 0 1 4 1
0 0 1 4

The coefficientsiné for choices (a) and (b) tend, for a large number of
spans, to become linearly dependent.

As another illustration of a good and bad choice of redundancies con-
sider the plane frame shown in Figure 23. We discuss two alterative choices

of redundancies for making the frame statically determinate. The structure
is a plane frame with four rings so that it is 12 times statically indeterminate.
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(a) 1In Figure 23a a cut is made of the center of each of the beams. "1t
is seen that each of the arbitrary constants at the release of the top beam
will produce a bending moment diagram throughout the length of the columns so
that each ring R, to R4 is affected. Thus, all influence coefficients &7,
8125 6135 evee 67, 12 will exist, there being three arbitrary constants for
each ring. 1In the case of the second beam from the top the arbitrary con-
stants of this cut will affect the beam itself and the whole length of the
column from this beam to the base so that each ring R; to R, is affected.
Thus, all influence coefficients 6 41> 842, 64 ceee % will exist. Each
succeeding beam will affect adjacent rings ang all other rings below the beamn.
We therefore find that each component of thne matrix § exists, i.e.,

XX
$11 S12 819 ——— % 1
S91 699 833 ———= % 12

GXX = — e et . — . e ——— e ——— —— — — ———— (4'-18)
812, 1 %12, 2 %12, 2 —— — %12, 12

(b) Consider now the other release system where one of the columns in
each ring is cut as shown in Figure 23b. 1In this system the arbitrary con-
stants of ring R, will affect only the members of ring R,. Therefore the
following influence coefficients of ring R1 will exist:

6ll 612 6l3

Ri1 % 1 %1 S5 833 (4-19)

$37 835 933

Similarly for the arbitrary constants of ring R, the influence coefficients

exist as follows: 2
644 645 646
Ry2 = | 854 955 s (4-20)
) ) )

64 65 66

and so on for the four rings.

However, since the second beam from the top is a shared member, - there
is an interaction between the ring Rl and R2 so that the following linking
terms arise:
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%14 S5 S35

B

Ro,= ¢ & ) é

12 26 %25 %26 (4-21)

834, 835 O3

In the case of a ring sharing members with rings on either side, two such
sets of linking terms arise. The final pattern of the GKY matrix can be
written as follows: -

_ )
l\ll \12 0 0
R R R 0
2 2
6= | b 223 (4-22)
0 Rap  Raz Ry
0 o R. R
23 a4
- _

This form of the matrix is usually called a continuant matrix. For all sets
of gimply connected rings a choice of redundancies can be made such that
the above pattern applies. It is noted that the above pattern also results
from the continuous beam using moment releases at the supports.

As a third illustration in the analysts selection of redundancies we
consider the case where it is possible to separate the redundants into grouns
such that there is coupling of redundants only within each group but there is
no coupling of redundants between groups.

For example, consider the generalized loading of plane frames such as
the one shown in Figure 24. 1In this case the arbitrary constants separate
into two sets.

(a) The first set consists of the moment X, and associated shear Xo for
bending in the plane of the portal and the direct thrust X3.

(b) The second set consists of the moment X, and associated shear X6
for bending normal to the plane of the portal and the torsional moment XS.

Note that the arbitrary constants in one group are not coupled to those of

the other. Thus, the matrix éxx is as follows:

8 s 8 1
11 12 i3 0 0 0 1
8 8 s :
21 22 23 0 0 0
s S s
B 31 32 33 0 0 0
Syy = (4-23)
8 s 8
0 0 0 44 45 46
0 0 0 54 55 56
5 s 8
0 0 0 64 65 66
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Figure 2, - Separable groups of redundants
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By = " (4-23)

Thus, using equation (4-23) and by partitioning and expanding the equation
for calculating the arbitrary constants, equation (2-28) can be broken in-
to two independent sets of simultaneous equations each of which will in-
volve a smaller number of unknowns than the original set.

The separation of GXX into two parts depends upon the following:

(a) The arbitrary constants shall be labelled in such a way that the
copuled elements are consecutively ordered together in one group and no
coupling occurs between elements of different groups.

(b) The axes of both the arbitrary constants X and the member ele-
ment forces are related to an orthogonal set of axes oriented to conicide
with the principal axes of the structure and also that all the shear centers
of the members of the structure lie in one plane.

The above concepts of selecting redundancies illustrated by some simple ex—
amples can be readily applied to structures which are comprised of relatively
simple finite elements and which are relatively regular in geometry. For

more general types of structures with more complex geometry the choice of
redundants may not be quite obvious. In many cases it is best when the equa-
tions are ill conditioned, to select a different basic system and corresponding

redundancies X which are statically equivalent with any previous choice of
redundancies X.

In cases where the above guidelines fails to yield a well conditioned
8y matrix, a transformation from a previous choice of redundants to an
orthogonal set of redundants 28; 29, 30 can ve performed. Although this
approach yields a diagonal 6yy matrix and is therefore very well conditioned
there are a considerably greater number of calculations involved. The pro-
cedure is as follows:

Let fy be the matrix of element forces (including both statically de-
terminate forces and redundants) resulting from unit values of the redun-
dants. Then

£ =70 X (4-24)

The columns of fy comprise the base vectors for the previously chosen
redundants.
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The next step is to orthogonalize these base vectors by the Gram-
Schmidt orthogonalization procedure. The desired set of orthogonal re-
dundants is obtained as follows: The first redundant of the desired
set is chosen equal to the first column vector of fx, i.e.,

The succeeding set of desired redundants are related to the given
set as follows:

£ =f +fC..+£fC (4-25)

It remains~to determine the coefficients Cij such that GXX is diagonalized.
i.e., in the congruent transformation

_F T = _
Sy = £, D £ (4-26)

the condition to be satisfied is

(GXX)., = (6XX)_. = 0 i#j (4-27)
ij ji

Using this condition the coefficient Cij in the transformation is

?iT D £,
C..= - ——=——ad— j>i . (4-28)

Beginning with the known vector Ei = £y, the constant C;, is computed

then the vector f,. Having obtained f, the constant C and C are cal-
2 2 i3 23
culated and so.on.

Note that the coefficients Cij depend only on the nature of the struc-
ture.

In the continuity equation the unknown redundants X are readily obtained
because the diagonal matrix SXX is easily inverted. Finally, the element
forces are obtained from
F=fX+f (4-30)
where -
f =]"Q (4-31)
0
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Une interesting property of the transformation to an orthogonal set of re—
dundants is the fact that the matrix fo is invariant to the class of trans-
formation

fx = CfX

vhere C is a non—singular matrix.

The main significance of the above approach is that in spite of the
ill-conditioning of the equations-the transformation to an orthogonal set
of redundants avoids critical arithmetic due to any numerical simgularity
of the §yy matrix. This is done however at the expense of a considerably
larger number of calculations which incurs manipulation errors.

Guidelines to the Programmer

Guidelines for the programmer includes related strategies to properly
sequence calculations to minimize errors. These revolve around the central
theme of arriving at the most suitable stable base structure so the best
set of redundant forces is used.

The following generally related areas in which guidelines to the pro-
grammer will help avoid critical arithmetic and minimize manipulation er-
rors in the force method are:

(1) Scaling of matrices prior to the solution process.

(2) Programming for elimination of extraneous equations in the equa-
tion set.

(3) Programming to detect, minimize and control errors in the solution
process by the Jordan diagonalization method.

(4) Programming to mathematically cut the structure to obtain a stables
and rigid determinate base structure and the set of redumdant forces that op-
timizes the conditioning of the associated coefficient matrix.

Depending upon the algorithm selected, items (4) and (3) can either be
separate or combined.

In the elimination process there are related strategies that are es—~
sential to minimize, detect, and control manipulation errors and to insure
success in the Gauss elimination method or Jordanian diagonmalization method
when used with unsymmetric matrices. These strategies are (a) scaling and
(b) use of Eivoting in the elimination process. Numerical studies by
Wilkinson 3132 show that by the use of scaling and pivoting, the Gauss
elimination process can be stabilized to prevent break down.

Consider first scaling. As an 1llustrative example, consider dif-

ferent possible choices for the generalized coordinates to represent the
flexibility matrix of a beam. The elastic behavior of the beam may be
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characterized by two generalized forces which may be a single independent
force at a coordinate degree of freedom or a linear combination of such
forces. The following sets of generalized forces are possible: (The ar-
rows with the strokes are the element reactions).

(1) One shear force and one moment at one end:

a 'QL—_T)MR or b. (ML

VR VL

(2) One moment at each end

MLCQ( )M
(3) One shear force at one end and one moment at the other end

a. M C«?' }VL or b V*{ %)MR

An alternative set of generalized forces based on a linear combination
of the forces in set (1) above is as follows:

Ty

It can be readily seen that the generalized forces F; and F) in the
above set is a linear combination of the generalized forces in la and 1lb.

10 - : (4-32)

The respective flexibility matrices for the above sets of generalized
forces are as follows:
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la or 1b: One shear force and one moment at an end

u
1 L
L 2
D == ; (4-33)
BL | g2
2 3

Scaling the displacements uﬁy%fand the forces by L we obtain

u
8 T
13
L
D= 5l (4-34)
i1
2 3
(2) One moment each end
91 62
11
= L 2 -
D= 3Er (4-35)
1 1
2 2
(3) One shear force at one end and one moment at the other end
u
L e d
1
_L 2 )
b= ET (4-36)
11
2 3
(4) Linear combination of forces in set 1
ot ]
D =35 } (4-37)
1 1
2 ;
N
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Using the ratio of the maximum and minimum eigenvalues as a measure of ma-

trix conditioning it is evident that the flexibility matrices given by (35)

and (37) are better conditioned than those given by (34) and (36) since the
eigenvalue ratios in the former are much smaller and closer to one than the
latter. Since a linear transformation always exist from one set of generalized
forces to another, by proper scaling one can seek to obtain the most suitable
form of flexibility matrix to use. The above results for a beam show that
using either two shear forces or two moments will yield a better conditioned
matrix than using a combination of a shear force and moment.

Consider next the problem of scaling the matrix A in the solution of
Ax = b, Alternate terms for scaling are preconditioning and equilibration.
This is normally done by multiplying the rows and columns of the matrix by
factors such that the elements of the matrix have approximately the same
magnitude. Hore rigorously, if the condition of the matrix A is defined by
some measure, the non—singular diagonal matrices Cl and C2 can scale A by
the transformation

) -1
A+Cl A C2

so as to reduce the condition of (Cl —lA Cz) to as low a value as is reasonably

possible. Powers of the floating point base are usually used for scale fac-
tors, to avoid the introduction of rounding errors in the scaling.

Although some studies33 have been made on the problem of finding C; and
Cy to minimize the condition of (Cy ~1s C2), it turns out that the solution
involves computation of A"l to find a reasonable scaling. Thus, from a
practical standpoint, the above method is open to question. The only advice
that one is sometimes given is to pick Cy and Cy so that the resulting matrix
c, ~la Co has elements of approximately the same magnitude or has its maximum
element in each row and column (in absolute value) in the interval (.1,1) in
whatever base one is using.

Another device for minimizing manipulation error is modified pivoting.
Pivoting consists of interchanging rows, columns, or rows and colums so
that the diagonal element in the ith row, after i reductions is non-zero,
This is a necessary part of Jordan reduction for an arbitrary non-singular
matrix. In modified pivoting, an attempt is made to find a large diagonal.
The pivot element is the diagonal element found.

There are three pure pivoting stratagies:

(a) Complete pivoting in which at each stage one selects as a pivot
some element ajj of maximum value among all the remaining elements of the
matrix.

(b) Partial pivoting with row interchange in which at each stage one
selects as a pivot some element a;. of maximum absolute value among the
first colum of the remaining elements of the matrix.

(c) Partial pivoting with column interchange in which one selects as
a pivot some element aj; of maximum absolute value among the first row of
the remaining elements of the matrix.
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Positive definite matrices, such as the matrix Sxy in the continuity
equations, do not require pivoting in the Jordan process though modified
pilvoting may be advantageous.

Although complete pivoting has invariably provided success and small
error bounds, the penalty paid is much longer computer times than partial
pilvoting., Studies by Wilkinson3l and previous experience with practical
types of problems indicate that the use of partial pivoting should be sat-
isfactory. However, since in floating point computation it is generally
not easy tordetermine if some number is effectively zero or not, it is
desirable to use as a safeguard a certain "pivot tolerance.” If in a certain
row (if partial pivoting by row interchange is used) or if in a certain column
(if partial pivoting by column interchange is used) no pivot greater than the
"pivot tolerance" can be found, then that row or column is considered to be a
linear combination of the other rows or columns in which pivots have already
been chosen. A pivot tolerance of 10=5 is adequate for a 27 bit mantissa.

Scaling and pivoting are actually related. From a theorem by Bauer33,
if the ordered set of pivotal elements is selected in advance, scaling of
matrix A by powers of the floating point base does not change a single digit
of significance of any intermediate or final number in the solution of AXx = b
by Gaussian elimination. Thus, the only possible effect of the scaling of A
on the rounding errors must occur through changing the order of pivots.

Probably the most important of all guidelines for the programmer for
minimization of manipulation errors is in programming to obtain the best
set of redundant forces. Recall that this operation is related to the
partitioning of the matrix P. In the selection of this set, it implies that
the associated base structure is stable and flexibility matrix for the re-
dundant set of forces is best conditioned. The term conditioning of a matrix
is based on some kind of measure. A well conditioned matrix generally im-
plies small errors in the elimination process.

1t is well known that the choice of the redundant forces in a statically
indeterminate structure is not unique. The only restriction is that for any
choice of redundant stress system, the associated determinate structure must
be stable. This implies that the coefficient matrix for the determinate forces
must be non—-singular.

Starting with the matrix P in the cutting of the structure mathematically,
it is desirable to weigh the elements of the P matrix by the relative flexi-
bilities of the elements. The idea is to bias the choice of redundant forces
in such a way that the more rigid members will comprise the base structure and
the more flexible members will comprise the redundants. It can be deduced
from the results of the test problems and the error analysis for the redundants
matrix, dyy, that ideally the resulting base structure should be the most rigid
of all possible alternative choices. In this case the load path is most direct.
The effect of the redundants is minimum since the stresses in the base structure
will be approximately the same as the stresses in the final structure. If the
base structure is relatively flexible the redundant forces have a significant
effect on the stresses of the base structure and critical arithmetic may be in-
volved.
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It is noted that most rigid elements de not necessarily build up the
most rigid, stable base structure. The connectivity of the elements also
enters into consideration. The weighting factors suggested aims to develop
a base structure incurring low, not least, manipulation error.

Elimination of extraneous equations in the equations of equilibrium
should be automated to eliminate inadvertent numerical singularities. This
may be accomplished in the generation of the elements of the coefficient matrix
P to yield linearly independent rows or in the Jordanian elimination process.

In the most general case six equations per joint or free body are required.
In many instances, however, fewer than six are independent. For example, a
plane pin jointed truss requires only two equations per joint. Writing more
than two equations results in a linearly dependent set of equationms.

The basic problems are twofold:

(1) To determine linear dependency of the equations. This is wanifested
if in the triangularization of the P matrix one or more dependent equations
of the form 0 = 0 will result. Due to round-off errors, however, the num-
bers may not be exactly =zero.

(2) To determine if the equations are consistent by investigating if
sufficient intermal restraint is provided for each applied load. In the tri-
angularization of P, with simultaneous reduction of F = F,, one or more equa-
tions of the form 0 = f£;, where fi is a non-zero component of the applied load
may result. In this case the equilibrium equations are inconsistent or in-
compatible and no solution exists. The model of the physical system is mathe-
matically unstable., If the equilibrium equations defined by the coefficient
matrix P is to be consistent and have linearly independent rows to avoid sin-
gularity, the extraneous equations of the form 0 = f£; must be eliminated or

modified by introducing additional structural restraint.

The elimination of extraneous equations may be achieved in two ways. 1In
the first the programming provides a means of inspecting the individual joints
to determine whether the internal element forces are null, colinear, or coplanar
and wrnite only the appropriate number of equations. Since the above conditions
may not be exactly satisfied due to iInput-output error, a cut-off criteria
should be used in the vector evaluation to determine if the degree of divergence
from any one of the above conditions (i.e., null, colinear, or coplanar) is
sufficient to warrent inclusion of the related equilibrium equations. An up-
per limit of the cut—off criteria define vector magnitudes which are sufficient
to warrant inclusion of equations. A lower limit of the cut~off criteria defines
vector magnitudes which are considered insignificant and permit elimination of
equations. Note that the lower limit of the cut—off criteria is intended to
compensate for the errors in the generation of the coefficients and do not in-
troduce additional errors. The upper limit of the cut—off criteria is quite
arbitrary. It is intended to detect errors due to poorly idealized joints or
in defining coordinates. From experience, the equations representing divergence
from the condition of null, colinear, or coplanar ranging from .00l to .003 are
often due to the above mistakes indicating erroneous idealization and formulation.
Thus, an upper limit cut-—off criteria of .003 is considered satisfactory.

114




The second way is to sense extraneous equations directly in the
Jordanian elimination process. In this method, an equivalent criteria is
used by specifying a certain "pivot tolerance" to determine if some number
is effectively zero or not. This method of elimination of extraneous equa-
tions, however, requires row interchanges rather than column interchange in
the partial pivoting strategy and is therefore usually uneconomical. If in
a certain row no pivot greater than a certain pivot tolerance can be found
then that row is considered to be a linear combination of the other rows
and pivots that have already been chosen.

As final guidelines to the programmer, there are checks that should be
included in the force method computer program to validate solutions. The
first consists of a singularity test. The pivot values in the triangulari-
zation of the P and S8yy matrix should be checked. If they are less than the
prescribed tolerance level of 107> the matrix is considered singular and
error notes should be printed out.

The following computer based tests which can be included are similar
to those already discussed in Section 3 for the displacement method.

(1) Test for error propagation characteristics in triangularization
process.

(2) Equilibrium check.

In addition to the above tests the following checks are peculiar only to
the force method.

(1) Back-substitution check in continuity equations. This is one
measure of the accuracy in the calculation of redundants.

(2) Evaluation of displacement calculations with respect to manipu-
lation error.

Some investigators7’ 34 have suggested the use of eigenvalue ratios as
a measure of manipulation error. The present analysis and test problems
have shown that these criteria is not always an adequate approach since it
does not reflect any numerical singularity in the two coefficient matrices
of concern. The matrix eigenvalue ratios for a structure does not change
regardless of the sequence of solving the equations. It has been shown in
this analysis however that the errors vary dramatically depending on how the
equilibrium equations are partitioned, i.e., the physical cutting of the
structure.
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Section 5

VERIFICATION ANALYSES

This section describes the displacement and force analyses of a
practical wing. The purpose of these analyses is to determine the magnitude
of manipulation error in a typical analysis and to apply the guidelines of
Sections 3 and 4 to a practical structural amalysis. In addition, these
analyses will provide a comparison between displacement and force method
manipulation errors.

Description of Problems

Figure 25 shows the geometry of the structure. The structure consists
of five main spars and four ribs supporting wvariable thickness skins.
Table XVI defines the geometry and material properties of the elements of
the structure.

A model of this structure has been fabricated and analyzed. These data
indicate that the basic network (identified by solid and dashed lines in
Figure 25) leads to satisfactory predictions of behavior.

The boundary conditions for this study are summarized in Table XVII.
The upper table defines the loading conditions when the box represents a
swept wing. The wing has a 30 degree sweep and represents the structural
box of a low aspect ratio surface. The swept end is fully fixed. All of
the six loads act normal to the wing.

The second set of boundary conditions consist of six loadings under
the assumption of full fixity along the long edge of the box. The structure
is then an unswept box. This alternate fixity condition changes the ratio
between series and parallel elements in the structure., In the first boundary
condition there are between ten and fourteen series elements and nine
parallel elements. With the fixity along the long edge, there are between
ten and fourteen parallel elements and nine series elements.

Displacement Method Analysis. - The structure shown in Figure 25 is
idealized as shear panels, membranes, and rods for the displacement method
analysis, The webs of the spars and ribs are treated as rectangular shear
panels. The rectangles are divided into two triangles, and each is repre-
sented by a triangular membrane. The model of Turner, et a12, is degenerated
to a shear panel by choosing only a non-zero shear modulus for the elastic
coefficients, The Turner membrane representation is also selected for the
skin elements. In this case, an isotropic material is defined. Stiffners
fastening the spar and rib webs to the skins and wing verticals are repres-
ented by rod elements.
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Table XVI

Properties of Structural Elements

Element

Spars A,E
Caps

Spars B,C,D
Caps

Ribs 1.4
Caps

Ribs 2.3

Spar & Rib
Panels

Skin
Panels

Bar Panel
Area Thickness Modulus, E Modulus Poisson's
in? in psi- 106  psi-10°6 Ratio
0.0652 -—- 10.525 - _——-
0.0466 - 10.525 -——- -——-
0.0652 - 10.525 --- ——-
0.0466 -~ 10.525 - -
--- 0.059 9.814 3.774 0.3
- 0.118 10.525 4,048 0.3

——— :




Table XVII

Loading Conditions - Swept End Fixed

Loading Condition

1

A un LN

Joint

A-1
E-1

A-1
A-1
E-1
A-3
E-3

Direction

-Z
-Z

A
£z
2
A
{2

Magni tude

1103.75
1103.75

2207.50
1,00
1.00
1.00
1.00

Loading Conditions - Long Edge Fixed

Loading Condition

1

[N B S N )

Direction

-7
-Z

~Z
{Z
2
{Z
{Z

-Magnitude

1103.75
1103.75

2207.50
1.00
1.00

- 1,00
1.00
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- It is noted that in a case of the displacement method analysis the
idealization involves no "lumping" of material. Panel thicknesses in the
skin and webs are taken directly from the geometry of the basic structure.
Cross sections of the rods are selected to match the geometry of the model
structure.

Figure 26 depicts the displacement method network and idealization
selected for the analysis. The idealization consists of 130 joints. At
each joint displacement in three orthogonal directions are admitted, thus
providing for a maximum of 390 degrees of freedom. The idealized wing is
comprised of 516 elements: 182 shear panels, 192 skin panels and 172
rods. The whole wing structure is considered in the analysis.

Not only was the box analyzed under two different displacement boundary
conditions, but two different analyses were run for each boundary condition.
The first analysis consisted of solution of the problem, using a 27 bit
mantissa to represent numbers. Calculations were performed on the IBM 7094.
The second displacement analysis for each boundary condition was run with a
mantissa of 23 bits. This size mantissa was selected to simulate the IBM
360 Fortran IV arithmetic. Only 23 bits were used to adjust for the hexi-
decimal normalization of the IBM 360.

Figures 27 and 28 show relative error contours for the two boundary
conditions, These data are developed by dividing the difference between the
23 and 27 bit solutions by the 27 bit answer. This provides a measure of
the relative manipulation error. Assuming the manipulation error is
proportional to 2°P, the measure is 15 times the error in the 27 bit solution.

For both boundary conditions, all normal deflection predictions using
the 23 bit mantissa were greater than for the 27 bit solution. Relative
errors were minimum where deflections were greatest and maximum where they
were least. The ratio of maximum to minimum relative error was about ten in
each condition.

Maximum error for the 23 bit solution is .73% for the swept wing and
.0627 for the unswept box. This result is found by scaling the errors of
Figures 27 and 28 by 16/15. Using equation (3-40) it is determined that this
error must be less than five percent if 68 bits are used in the mantissa.

The formula is satisfied, but very pessimistic. Equation (2-15) provides a
better bound on error. The table below shows the calculation data and the
predicted error bound and actual maximum relative errors.

Structure No. Egs. Y ve. No. Calculations gmax(Z-ls) gmax(Actual)
Swept Wing 360 34.0 453,800 1.06% 0.73%
Unswept Box 300 28.1 261,100 0.61% 0.062%
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Table XVIII lists the influence coefficients for unit loadings
described by loads 3, 4, 5, and 6 in Table XXI for each boundary condi-
tion. These data are based on a 23 bit mantissa and involve only loads
and displacement normal to the box. The underlined elements in this
table have the biggest error in satisfying Maxwell's reciprocity theorem.
In both the swept wing and unswept box, these terms relate the tip
influence to a joint adjacent to the root of the cantilever.

The table below shows the reciprocity relative error and the mani-
pulation errors for these coefficients. The reciprocity relative error
was calculated by dividing the error by the 27 bit mantissa answer. This
answer satisfied reciprocity to six parts and the seventh digit, The
relative manipulation error was obtained by dividing the difference in
the influence coefficient for the 23 and 27 bit solutions by the 27 bit
result. This table shows that with higher manipulation error, the error
in satisfying Maxwell's theorem is greater. However, they also show that
the symmetry error is a poor measure of manipulation error. It is noted
that the reciprocity check for the unswept box would be expected to have
larger error than that of the swept wing because the coefficient is of
small magnitude.

Reciprocity and Manipulation Error

(23 bit error/27 bit result)

Swept Wing Unswept Box
Reciprocity Relative -5 -5
Error .191 x 10 2,37 x 10
Relative Manipulation -5 -5
Error 84.4 x 10 383. x 10
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Table XVIIIL

Influence Coefficients (p=23)%

Deflected
—Joint

Al
El
A3

E3

Deflected

Joint

AL
Al
D4
DL

.17200531

.30936913"
.222326797°
.669917797°
.32952078

Al

.25830959"3
.19804193"3
.24087919"

4
-4

A4

4

-6

Swept Wing

Load At:

El

.1980421073
.26603381°3
.13673729° %

.34577366™%

Unswept Box

Load At:

Al

.222327707°
4181441974
404215687
.922336227°

A3

. 240878724
.13673694°%
. 145554574

. 240860522

D4

5
7

.66991787"
.40422528"
.921554607 2
-.68138106"/

.32952533
.92233677"
.68137396" 7
.94475617°

E3

.17200505"%
.34577300™%
. 240860307

. 24834058 %

Dl

-6
5

* Exponents in table imply a multiplier of 10 with that exponent;

3.g.

means

.32 x 1074,
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Force Method Analysis. - The same four analyses were run for the force
method as for the displacement method. The "lumped parameter' approach was
taken in the idealization. This resulted in bars under axial restraint
whose areas were a summation of true frame members and stringers plus portions
of adjacent skin or web material, The skin and webs were represented by
panels which (in the idealization) could carry shear only. If follows then,
that the bar areas used in the force method are greater than those of the
displacement method and that more bars exist.

Figures 29, 30, and 31 show the basic components used for the ideali-~
zation. These are 130 joints (nodes), 293 bars, and 168 panels.

It becomes evident that the computation of percent relative error
(100(Fy7 - F23)/F27) is not relevant for answers close to zero since rel=-
atively small answers are unreliable. Since answers are reported as nodes
only, the possibility of answers near zero increases as the structural ide-
alization is made finer, For the structural examples used in this report
the grid is coarse enough so that no extremes in percent relative error
encountered but there is a definite trend toward larger percent relative
error for the smaller values of forces.

For the stiffness method of solution, the primary unknowns are dis-
placements and these were used in showing the error characteristics. For
the flexibility method, the primary unknowns are forces and therefore
errors related to force answers are reported. Those chosen are the bar axial
stresses (in the upper surface) which are effectively spar caps. For the
swept wing these run in the long direction of the structure and for the
unswept box, in the short direction.

The behavior of the error characteristics can best be shown by
plotting the difference in answers (F2 - F,,) from the 27 bit solution
against the 27 bit answers as shown-in Figure 32 and 33. Note that the
abcissa are differences in answers and not percent relative error. For
the swept wing (Figure 32) it can be seen that the answers for spars A, B,
and C show relatively small differences (absolute values are used) regardless
of the force magnitudes, whereas for spars D and E the differences are rel-
atively large and increase roughly proportional to the force magnitudes.

In attempting to account for the existence of this phenomena it was discov-
ered that spars D and E were retained as part of the statically determinate
structures whereas spars A, B, and C were cut, i.e., they were redundant.

For the unswept wing the relative error associated with the largest
force is .0047 and that associated with the smallest force is .164% for
the 23 bit solution. These data are obtained by scaling difference errors
by 16/15. Averaging the five values at rib 2 (approximately mid-length)
yields .0951% relative error.

For the unswept box (Figure 33) the variation of differences between
27 and 23 bit answers taken from root to free end vary roughly proportional
to the force magnitudes., The slope, which is a rough indication of relative
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error, is different for each line. TFor the 23 bit solution, the relative
error associlated with the largest force is .068%, with the smallest force,
and the mean for rib C is .137%.

The table below summarizes the problem characteristics and predictions
of upper bound error based on equation (2-15), These data indicate that
error bounds are very conservative for the force method.

Structure Eqs. Unknowns Redund. Calculations ep,,(2-15) e, . (actual)
Swept Wing 390 491 101 1.71 x 10°  4.09% .164%
Unswept Box 390 551 161 3.58 x 10°  8.38% . 606%

Table XIX lists the influence coefficients (23 bit solution using the
flexibility method) for unit loads 3, 4, 5, and 6 in Table XVII for both
structures. The underlined elements show the largest deviation from satis-
fying maxwell's reciprocity theorem.

The table below compares the maximum reciprocity relative error and the
manipulation relative error for the same items. Fair correlation exists.
Comparing these values with those of the stiffness method shows larger errors
for the flexibility method. This may be attributed to the fact that deflections
are secondary answers in the flexibility method. This is corroborated by
the increase indicated for manipulation error over the values cited above for
force manipulation error.

Reciprocity and Manipulation Error

(23 bit error/27 bit solution

Relative Reciprocity
Error 175.3 x 10~ 12720, x 102

Relative Manipulation
Error 125.4 x 1072 5407x9 x 1072
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Influence Coefficients

Table XIX

Flexibility Method (23 Bit Solution)

Deflection
Joint

Al

El

A3
E3

Deflection
Joint

A4
Al
D4

D1

. 15465255

Al

.20341133"3
. 1627092473

.16617989- %

-4

A4

.25654212-%
. 1362641377
4640314772

.11399606"/

Swept Wing

Load At

El

.16268703°3

.221228453

.97806405~5

.30263036" %4

Unswept Box

Load At

Al

.13474491°5

.31488911°%

—. 246060166

.54632010°°

.16619749

A3

-4

.97645826™%

91812129472
.125349837°

D4

.30316180

.18139210

4618428672

—. 2463148176

.7472001073

—.11489374-6

E3

. 154589764

-4

125526372

-4

D1

.10113581-7
.54631855
.11576549-6

.59473158" 7
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Comparison of Displacement and Force Method Errors

The table below furnishes a comparison of measured and predicted
bounds for manipulation errors in evaluating the primary unknowns.
are for the 23 bit analysis.

Errors
These data show that the displacement method

incurs smaller errors for the unswept box and the force method smaller for

the swept wing. Since errors are less than bound predictions, critical
arithmetic was not an important error source in either analysis.

Suppose

the selection of analysis method is to be such that manipulation error is

minimized. Then, these data suggest that the displacement method has

smaller errors for structures whose subsystems act predominately in parallel

(box) and force method with series subsystems (wing).

Arithmetic in the

force method is indicated to be better optimized since measured errors are
a smaller fraction of the upper bound errors.

Analysis Relative Error

(Percent)

Stiffness Method

(Deflections)
Wing Box

With largest

answer .066 0664
With smallest

answer .73 064
Mean for mid-

rib (Rib 2 or

C) .091 .0195

Error bound 1.06

.61

Flexibility Method

(Forces)
Wing Box
.0014 .0682
.164 .606
.0951 .137
4,09 8.38
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Section 6

CONCLUSIONS

Table XX summarizes and characterizes the errors examined for the dis-
placement and force methods. Input, generation and output errors are similar
for the two methods, Elimination errors examined are the same but are of
differing importance in the two approaches. Note that the solution process
chosen for displacement method permits separating attrition. error into
decomposition cumulative and substitution attrition error,

Table XXI summarizes some of the guidelines the analyst can use for mini-
mizing error. This table is concerned with modification of the problem to
descriptive data since this is at the amalyst's disposal. Guidelines for input,
output, and generation errors can normally be disregarded.

Particular criteria to fix required drithmetic precision in a structural
analysis have been estimated for series systems in the displacement method and
for parallel systems for the first method. These criteria appear in Sections
3 and 4. On the basis of the evidence presented in Section 5, these criteria
must be regarded as very conservative.,

Based on the study described in the previous sections, the following con-
clusions are drawn:

(1) Elimination is the most important error source. Input errors, except
for decimal fractions, can be interpreted by the analyst in terms of a modified
structural model. These errors usually are negligible. Generations are small
since relatively few calculations are required per coefficient in the structural
equations, Lack of discrimination in the coordinant data is the largest
single source of generation error can cause significant errors. Output
errors are negligible unless as many digits are printed out as are contained
in the computer representation of the number,

(2) Comnsidering series systems as critical for the displacement method
and parallel systems as critical for the force method, the following character-
istics were observed for elimination errors:

(a) In both methods, the solution can be invalidated due to
numerical singularity, unstable propagation of manipulation errors,
cumulative triangularization (decomposition) attrition errors, and
attrition errors in the substitution processes.,

(b) While singularity errors are important in the displacement
method, they are relatively unimportant for the force method.

(c) Attrition errors are important for the displacement method
and the force method. Cumulative attrition errors are important for

135




" the displacement method, particularly for systems of equations of
higher than first order. Substitution errors are not. Because of
the large number of calculations involved in the force method
manipulations, attrition errors are important for the force method
diagonalization.

(3) As presently practiced, the force method intrinsically has lower
manipulation error than the displacement method. In the force method, re-
dundants are often selected automatically and equations sequenced in an
attempt to minimize manipulation errors. The displacement method has no
equivalent operation. The sequencing of equations is entirely at the disposal
of the engineering analyst. The force method uses the Gauss-Jordan reduction
process which is more accurate than the Choleski process used in some dis-
placement analyses. The force method uses few and simple element representa-
tions which involve low manipulation error while the displacement method may
use a broad class of representations, some of which may incur large manipula=~
tion errors.

(4) With optimum error control, single precision arithmetic is regarded
as adequate for the analysis of problems up to 5000 order., Lacking optimum
control, higher precision arithmetic can be used. The worst case structure in
the displacement method for single precision on the IBM 360 permits treatment
of 60 series beam elements of 1300 series rod elements. Few practical struc-
tures being analyzed today have more than 60 elements in series, although very
small sets of equations can be involved with hundreds of elements in series.
Since the error is reduced by a factor of two for every added bit in the
mantissa, the 48 bit word machines (Philco 212, Honeywell MH 800, CDC 3600,
and Burroughs B5500) will involve negligible manipulation error except for
pathological problems.

(5) Manipulation error bounds based on the number of calculations can
provide a measure of error when critical arithmetic is avoided. Equation
(2-15) gives fair error estimates for both the displacement and force analysis.
It does not indicate the proper selection of analysis method, if manipulation
error is to be minimized, because arithmetic is better optimized in the force
method, These conclusions are based on the verification analyses. These
analyses also confirm that structures composed predominately of parallel
subsystems should be analyzed by the displacement method., Structures with
most subsystems in series should be analyzed by the force method to minimize
manipulation errors.
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LET

PRVIVE R -Iar. 1Y

Summary of Importance of Manipulation Errors

Exrrors Page References Displacement Method Force Method
Input =~ Output 9 Negligible except for unusual cases
Truncation 9, 11 Input, controlled by analyst; output, by coder
Conversion 9, 11 Input, only significant for decimal fractions;
output, only for last digit of number representation
Generation 28, 84 Small, controllable, and easily measured
Coordinate discrimi-
nation 30,84, 99 Important in comparative studies
Transformation 27, 87 Negligible since few operations/coefficient
Series Addition 15,34, 99 Negligible if small components added first
Elimination Large errors possible

Can be sensed and controlled so need not be an

Unstable propagation 41,57, 83
output

Large and possibly unavoidable for high order and

Cumulative attrition 48, 60
large sets of difference equations
Numerical singularity 49,63, 69 Small with optimum Usually very small
87,90, 99 joint numbering
Small Small with optimum

Substitution attrition 51,64, 81
redundant selection

69,132 Small, but may involve | Small

Secondary unknown
critical arithmetic




Table XXI

Analyst's Guidelines

Error

Input

Generation

Elimination

Output

Displacement Method Guides Force Method Guides
Scale to minimize truncation error and decimal fraction input.

Use local coordinates for structural elements.
Local origin of global system at centroid of structure.
Choose goordinate surfaces parallel to structural surfaces.

Number most flexible elements first.

Avoid adjacent incommensurate Avoid adjacent incommensurate
stiffnesses, flexibilities,
Number joints from free edge. Number stiff determinate sub-
structure first starting at
fixity.

Number toward stiffer structure.

Avoid Choleski algorithm. Avoid Cholesgki algorithm.

Average stresses.

Disregard last converted digit if computer prints entire
representation.
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